常微分方程习题课课件.ppt

上传人(卖家):三亚风情 文档编号:3332323 上传时间:2022-08-20 格式:PPT 页数:40 大小:1.04MB
下载 相关 举报
常微分方程习题课课件.ppt_第1页
第1页 / 共40页
常微分方程习题课课件.ppt_第2页
第2页 / 共40页
常微分方程习题课课件.ppt_第3页
第3页 / 共40页
常微分方程习题课课件.ppt_第4页
第4页 / 共40页
常微分方程习题课课件.ppt_第5页
第5页 / 共40页
点击查看更多>>
资源描述

1、1.1.知道并理解与微分方程相关的概念知道并理解与微分方程相关的概念 一、基本要求一、基本要求2.2.熟练掌握一阶微分方程的解法熟练掌握一阶微分方程的解法 3.3.熟练掌握可降阶的高阶微分方程的解法熟练掌握可降阶的高阶微分方程的解法 4.4.理解线性微分方程解的结构理解线性微分方程解的结构 .熟练掌握二阶常系数线性方程解法熟练掌握二阶常系数线性方程解法 第七章第七章 微分方程微分方程第1页,共40页。1 1、基本概念、基本概念微分方程微分方程凡含有未知函数的导数或微分的方程叫微凡含有未知函数的导数或微分的方程叫微分方程分方程微分方程的阶微分方程的阶微分方程中出现的未知函数的最微分方程中出现的未

2、知函数的最高阶导数的阶数称为微分方程的阶高阶导数的阶数称为微分方程的阶微分方程的解微分方程的解代入微分方程能使方程成为恒等式的函代入微分方程能使方程成为恒等式的函数称为微分方程的解数称为微分方程的解 二、内容提要二、内容提要 第2页,共40页。通解通解如果如果微分方程的解中含有任意常数,并且任微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解做微分方程的通解特解特解确定了通解中的任意常数以后得到的解,叫做微确定了通解中的任意常数以后得到的解,叫做微分方程的特解分方程的特解初始条件初始条件用来确定任意常数的条

3、件用来确定任意常数的条件.初值问题初值问题求微分方程满足初始条件的解的问题,叫初求微分方程满足初始条件的解的问题,叫初值问题值问题第3页,共40页。dxxfdyyg)()(形如形如(1)可分离变量的微分方程可分离变量的微分方程解法解法 dxxfdyyg)()(分离变量法分离变量法2 2、一阶微分方程的解法、一阶微分方程的解法)(xyfdxdy 形如形如(2)齐次方程齐次方程解法解法xyu 作变量代换作变量代换第4页,共40页。)(111cybxacbyaxfdxdy 形如形如齐次方程齐次方程,01时时当当 cc,令令kYyhXx ,(其中(其中h和和k是待定的常数)是待定的常数)否则为非齐次方

4、程否则为非齐次方程(3)可化为齐次的方程可化为齐次的方程解法解法化为齐次方程化为齐次方程第5页,共40页。)()(xQyxPdxdy 形如形如(4)(4)一阶线性微分方程一阶线性微分方程,0)(xQ当当非齐次非齐次,0)(xQ当当齐次齐次.)(dxxPCey(使用分离变量法)(使用分离变量法)dxxPdxxPeCdxexQy)()()(通解通解通解通解(常数变易法)(常数变易法)第6页,共40页。(5)(5)伯努利伯努利(Bernoulli)(Bernoulli)方程方程nyxQyxPdxdy)()(形如形如)1,0(n方程为线性微分方程方程为线性微分方程.时时,当当1,0 n 方程为非线性微

5、分方程方程为非线性微分方程.时时,当当1,0 n解法解法 需经过变量代换化为线性微分方程需经过变量代换化为线性微分方程,1 nyz 令令.)1)()()1()()1(1 cdxenxQezydxxPndxxPnn第7页,共40页。3 3、可降阶的高阶微分方程的解法、可降阶的高阶微分方程的解法解法解法),(xPy 令令特点特点.y不显含未知函数不显含未知函数),()2(yxfy 型型)()1()(xfyn 接连积分接连积分n次,得通解次,得通解 型型解法解法代入原方程代入原方程,得得).(,(xPxfP ,Py 第8页,共40页。,Py 令令特点特点.x不不显显含含自自变变量量),()3(yyf

6、y 型型解法解法代入原方程代入原方程,得得).,(PyfdydpP,dydpPy 第9页,共40页。、线性微分方程解的结构、线性微分方程解的结构(1 1)二阶齐次方程解的结构)二阶齐次方程解的结构:)1(0)()(yxQyxPy形如形如第10页,共40页。(2 2)二阶非齐次线性方程的解的结构)二阶非齐次线性方程的解的结构:)2()()()(xfyxQyxPy 形形如如第11页,共40页。、二阶常系数齐次线性方程解法、二阶常系数齐次线性方程解法)(1)1(1)(xfyPyPyPynnnn 形如形如n 阶常系数线性微分方程阶常系数线性微分方程0 qyypy二阶常系数齐次线性方程二阶常系数齐次线性

7、方程)(xfqyypy 二阶常系数非齐次线性方程二阶常系数非齐次线性方程解法解法由常系数齐次线性方程的特征方程的根确定由常系数齐次线性方程的特征方程的根确定其通解的方法称为其通解的方法称为特征方程法特征方程法.第12页,共40页。二阶常系数齐次线性方程解法二阶常系数齐次线性方程解法),(0为常数qpyqypy 02qrpr特征方程xrxreCeCy212121,rr特征根实根21rr 221prrxrexCCy1)(21ir,21)sincos(21xCxCeyx特特 征征 根根通通 解解第13页,共40页。rk重实根)(1110kkrxxCxCCejk复根:重共轭一对sin)(cos)(11

8、101110 xxDxDDxxCxCCekkkkx特征方程的根特征方程的根通解中的对应项通解中的对应项rxeCr单实根jr2,1一对单复根:)sincos(21xCxCex n n 阶常系数齐次线性方程解法阶常系数齐次线性方程解法 特征方程特征方程 0111 nnnnPrPrPr第14页,共40页。、二阶常系数非齐次线性微分方程解法、二阶常系数非齐次线性微分方程解法)(xfqyypy 型型)()()1(xPexfmx 求特解的方法求特解的方法待定系数法待定系数法)(*xQexymxk设特解 是重根是重根是单根是单根不是根不是根 2,10k*yYy通解:第15页,共40页。型sin)(cos)(

9、)()2()2()1(xxPxxPexfnlxsin)(cos)()2()1(*xxRxxRexymmxk设特解次多项式是其中,mxRxRmm)(),()2()1(nlm,max.1;0是特征方程的单根时不是特征方程的根时iik第16页,共40页。二、典型例题二、典型例题.)cossin()sincos(dyxyxxyyxdxxyyxyxy 求通解求通解例例1 1解解原方程可化为原方程可化为),cossinsincos(xyxyxyxyxyxyxydxdy 第17页,共40页。,xyu 令令.,uxuyuxy 代入原方程得代入原方程得),cossinsincos(uuuuuuuuxu ,cos

10、2cossinxdxduuuuuu 分离变量分离变量两边积分两边积分,lnln)cosln(2Cxuu ,cos2xCuu,cos2xCxyxy 所求通解为所求通解为.cosCxyxy 第18页,共40页。.32343yxyyx 求通解求通解例例2 2解解原式可化为原式可化为,32342yxyxy ,3223134xyxyy 即即,31 yz令令原式变为原式变为,3232xzxz ,322xzxz 即即对应齐方通解为对应齐方通解为,32Cxz 一阶线性非齐方程一阶线性非齐方程伯努利方程伯努利方程第19页,共40页。,)(32xxCz 设设代入非齐方程得代入非齐方程得,)(232xxxC ,73

11、)(37CxxC 原方程的通解为原方程的通解为.73323731xCxy 利用常数变易法利用常数变易法第20页,共40页。的通解的通解求求例例yyxydxdycos23解:将原方程写成 yyxydydxcos1Cdyeyyexdyydyy11)cos(Cdyyyyy1)cos()sin(yCy第21页,共40页。.0324223 dyyxydxyx求通解求通解例例4 4解解)2(3yxyyP ,64yx )3(422yxyxxQ ,64yx )0(y,xQyP 方程为全微分方程方程为全微分方程.第22页,共40页。(1)利用分项组合法求解利用分项组合法求解:原方程重新组合为原方程重新组合为,0

12、)1()(32 ydyxd即得即得,01)32(2423 dyydyyxdxyx故方程的通解为故方程的通解为.Cyyx132第23页,共40页。(2)利用曲线积分求解利用曲线积分求解:,32422),()1,0(3Cdyyxydxyxyx ,312142203Cdyyxydxxyx 即即.113212Cyxyxyy 故方程的通解为故方程的通解为.Cyyx132第24页,共40页。.0)2()2(2222 dyxyxdxyyx求通解求通解例例5 5解解,22 yyP,22 xxQ,xQyP 非全微分方程非全微分方程.利用积分因子法利用积分因子法:原方程重新组合为原方程重新组合为),(2)(22x

13、dyydxdydxyx 第25页,共40页。222yxxdyydxdydx ,)(1)(22xyxyd ,ln11lnCxyxyyx 故方程的通解为故方程的通解为.yxyxCeyx 第26页,共40页。.212yyy 求通解求通解例例6 6解解.x方程不显含方程不显含,dydPPyPy 令令代入方程,得代入方程,得,212yPdydPP ,112yCP 解解得得,,11 yCP,11 yCdxdy即即故方程的通解为故方程的通解为.12211CxyCC 第27页,共40页。例7 已知方程 有三个解 ,求此方程满足初始条件 的特解。)()()(xfyxQyxPy xxeyeyxy2321,3010

14、)(,)(yy解:由线性微分方程解的结构理论知,及 是对应齐次方程 12yy13yy 0 yxQyxPy)()(的解且它们线性无关,所以对应齐次方程的通解)()(xeCxeCYxx221故原方程的通解为 xxeCxeCyxx)()(2213010)(,)(yy由由2121CC,所求特解为 xxeey22第28页,共40页。.)()(,)(11112 yyexyyyx求特解求特解例例8 8解解特征方程特征方程,0122 rr特征根特征根,121 rr对应的齐次方程的通解为对应的齐次方程的通解为.)(21xexCCY 设原方程的特解为设原方程的特解为,)(2*xebaxxy ,2)3()(23*x

15、ebxxbaaxy 则则,2)46()6()(23*xebxbaxbaaxy 第29页,共40页。代代入入原原方方程程比比较较系系数数得得将将)(,)(,*yyy,21,61 ba原方程的一个特解为原方程的一个特解为,2623*xxexexy 故原方程的通解为故原方程的通解为.26)(2321xxxexexexCCy ,1)1(y,1)31(21 eCC,6)1()(3221xexxCCCy 第30页,共40页。,1)1(y,1)652(21 eCC,31121 eCC,651221 eCC由由解得解得 ,121,61221eCeC所以原方程满足初始条件的特解为所以原方程满足初始条件的特解为.

16、26)121(61223xxxexexexeey 第31页,共40页。).cos(xxyy2214 求解方程求解方程例例9 9解解特征方程特征方程,042 r特征根特征根,22,1ir 对应的齐方的通解为对应的齐方的通解为.2sin2cos21xCxCY 设原方程的特解为设原方程的特解为.*2*1*yyy ,)1(*1baxy 设设,)(*1ay 则则,0)(*1 y,得,得代入代入xyy214 ,xbax2144 第32页,共40页。由由,04 b,214 a解得解得,0 b,81 a;81*1xy ),2sin2cos()2(*2xdxcxy 设设,2sin)2(2cos)2()(*2xc

17、xdxdxcy 则则,2sin)44(2cos)44()(*2xdxcxcxdy ,得,得代入代入xyy2cos214 第33页,共40页。故原方程的通解为故原方程的通解为.2sin81812sin2cos21xxxxCxCy ,2cos212sin42cos4xxcxd 由由,04 c,214 d即即,81 d,0 c;2sin81*2xxy 第34页,共40页。例例10 设,)(2Cxf且满足方程xtdtftxxxf0)()(sin)(求.)(xf提示提示:xxtdtfttdtfxxxf00)()(sin)(上式两边对 x 求导两次:xxfcos)()(sin)(xfxxf xtdtf0)

18、()(xfx)(xfx因此问题化为解下列初值问题xxfxfsin)()(,0)0(f1)0(f最后求得xxxxfcos2sin21)(第35页,共40页。已知 在全平面上与路径无关,其中 具有连续的一阶导数,并且当 是起点在(0,0),终点为(1,1)的有向曲线时,该曲线积分值等于 ,试求函数 。Ldxxyydyxx)()(22232)(xL41)(x11例例解:yPxQ由由)()(xyyxx 3xxx)()(3CdxxeeCdxxeexxxdxdx3333)()(31313xCex1011002241211232ydydxxyydyxx)()()(),(),(11)(3913eC)()(31

19、3191333xexx 第36页,共40页。间间链条滑过钉子需多少时链条滑过钉子需多少时下垂米,试问整个下垂米,试问整个边边的一边下垂米,另一的一边下垂米,另一上,运动开始时,链条上,运动开始时,链条一无摩擦的钉子一无摩擦的钉子一质量均匀的链条挂在一质量均匀的链条挂在解解例例1212oxm8m10,米米链条下滑了链条下滑了经过时间经过时间设链条的线密度为设链条的线密度为xt 则由牛顿第二定律得则由牛顿第二定律得,)8()10(22gxgxdtxdm .0)0(,0)0(,99 xxgxgx即即第37页,共40页。解此方程得解此方程得,1)(21)(3131 tgtgeetx,8,x即即整整个个

20、链链条条滑滑过过钉钉子子代入上式得代入上式得)().809ln(3秒秒 gt第38页,共40页。yoy例例13从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度 y 与下沉速度 v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始下沉,在下沉过程中还受到阻力和浮力作用,设仪器质量为 m,体积为B,海水比重为,仪器所受阻力与下沉速度成正阻力与下沉速度成正 比比,比例系数为 k(k 0),试建立 y 与 v 所满足的微分方程,并求出函数关系式 y=y(v).提示提示:建立坐标系如图.质量 m体积 B由牛顿第二定律得B22tdydmvk重力重力浮力浮力 阻力阻力mgtdvdtdyd22tdydydvdydvdvvkBgmydvdvm第39页,共40页。BgmvkBgmkBgmmvkmyln)(2vkBgmydvdvm初始条件为00yv用分离变量法解上述初值问题得yoy质量 m体积 B第40页,共40页。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(常微分方程习题课课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|