名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt

上传人(卖家):三亚风情 文档编号:3342981 上传时间:2022-08-22 格式:PPT 页数:33 大小:509KB
下载 相关 举报
名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt_第1页
第1页 / 共33页
名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt_第2页
第2页 / 共33页
名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt_第3页
第3页 / 共33页
名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt_第4页
第4页 / 共33页
名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、:如何确定空中飞行的飞机的置?如何确定空中飞行的飞机的置?怎样确切的表示室内灯泡的位置?怎样确切的表示室内灯泡的位置?对问题对问题1,2的分析的分析对于直线上的点,我们可以通过建立数轴来确定对于直线上的点,我们可以通过建立数轴来确定点的位置;点的位置;对于平面上的点,我们可以通过建立平面直角坐对于平面上的点,我们可以通过建立平面直角坐标系来确定点的位置;标系来确定点的位置;对于空间中的点,我们也希望建立适当的坐标系对于空间中的点,我们也希望建立适当的坐标系来确定点的位置来确定点的位置.因此,如何在空间中建立坐标系,就成为我们需因此,如何在空间中建立坐标系,就成为我们需要研究的课题要研究的课题.

2、数轴数轴Ox上的点上的点M,可用与它对应的实数,可用与它对应的实数x表示;表示;直角坐标平面上的点直角坐标平面上的点M,可用一对有序实数,可用一对有序实数(x,y)表示表示xOxMxOyA(x,y)xy知识探究(一):空间直角坐标系知识探究(一):空间直角坐标系 归纳归纳:数轴上的点数轴上的点M M的坐标用一个实的坐标用一个实数数x x表示,它是表示,它是一维坐标一维坐标;平面上的;平面上的点点M M的坐标用的坐标用一对有序实数一对有序实数(x x,y y)表示,它是表示,它是二维坐标二维坐标.设想:对于空设想:对于空间中的点间中的点M M的坐标,需要几个实数表的坐标,需要几个实数表示?示?O

3、 Ox xx xO Ox x(x,y)(x,y)y y联想并思考联想并思考1:1:平面直角坐标系是由平面直角坐标系是由两条互相垂直的数轴组成,请大家两条互相垂直的数轴组成,请大家想一想:怎样建立一个空间直角坐想一想:怎样建立一个空间直角坐标系?空间直角坐标系由几条数轴标系?空间直角坐标系由几条数轴组成呢?其相对位置关系如何?组成呢?其相对位置关系如何?三条交于一点且两三条交于一点且两两互相垂直的数轴两互相垂直的数轴 空间直角坐标系的建立:空间直角坐标系的建立:在空间中,过任意的一在空间中,过任意的一点点O O作三条两两互相垂直的具有相同长度单位的数作三条两两互相垂直的具有相同长度单位的数轴:轴

4、:x x轴、轴、y y轴、轴、z z轴,组成空间直角坐标系轴,组成空间直角坐标系O-xyzO-xyz,(如下图所示)如下图所示)其中点其中点O O叫做叫做坐标原点坐标原点,x x轴、轴、y y轴、轴、z z轴叫做轴叫做坐标轴坐标轴,通过每两个坐标轴的平面叫做,通过每两个坐标轴的平面叫做坐坐标平面标平面,并分别称为,并分别称为xOyxOy平面、平面、yOzyOz平面、平面、xOzxOz平面平面.xyzOx xz zy yO O思考思考2:2:在空间直角坐标系在空间直角坐标系OxyzOxyz中,中,三个坐标平面的位置关系如何?三个坐标平面的位置关系如何?它们它们将空间分成几个部分?将空间分成几个部

5、分?在空间直角坐标系中,三个坐标平面的位置关系在空间直角坐标系中,三个坐标平面的位置关系是两两互相垂直,它们把空间分成是两两互相垂直,它们把空间分成8部分,我们部分,我们把每把每一部分别叫做第一部分别叫做第1卦限,第卦限,第2卦限,第卦限,第3卦限,第卦限,第4卦限,第卦限,第5卦限,第卦限,第6卦限,第卦限,第7卦限,第卦限,第8卦限卦限x xz zy y12345687O思考思考3:3:如图,在长方体如图,在长方体ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中,以点中,以点D D为坐标原点建立空间直角为坐标原点建立空间直角坐标系,那么坐标系,那么x x轴、轴、y y轴

6、、轴、z z轴应如何轴应如何选取?选取?ABCDA1B1C1D1x xy yz z知识探究(二)空间直角坐标系中点的坐标知识探究(二)空间直角坐标系中点的坐标 思考思考1:1:在平面直角坐标系中,点在平面直角坐标系中,点M M的的横坐标、纵坐标的含义如何?横坐标、纵坐标的含义如何?O Ox x(x,y)(x,y)y y|x|x|y|y|思考思考:在空间直角坐标系中,怎样描述一点在空间直角坐标系中,怎样描述一点M位位置呢?置呢?在空间直角坐标系中,设点在空间直角坐标系中,设点M M为空间的一为空间的一个定点,过点个定点,过点M M分别作垂直于分别作垂直于x x轴、轴、y y轴、轴、z z轴的平面

7、,垂足为轴的平面,垂足为A A、B B、C.C.设点设点A A、B B、C C在在x x轴、轴、y y轴、轴、z z轴上的坐标分别为轴上的坐标分别为x x、y y、z z,那么点,那么点M M的位置与有序实数组(的位置与有序实数组(x x,y y,z z)是一个什么对应关系?)是一个什么对应关系?AOxMyzxxCOMyzzBOxMyzy 设点设点M是空间的一个定点,过点是空间的一个定点,过点M分别作垂直分别作垂直于于x 轴、轴、y 轴和轴和z 轴的平面,依次交轴的平面,依次交x 轴、轴、y 轴和轴和z 轴轴于点于点P、Q和和RyxzMO 设点设点P、Q和和R在在x 轴、轴、y 轴和轴和z 轴

8、上的坐标分别轴上的坐标分别是是x,y和和z,那么点,那么点M就对应唯一确定的有序实数组就对应唯一确定的有序实数组(x,y,z)MRQP我们把有序实数组(我们把有序实数组(x x,y y,z z)称为点)称为点M M的的空间坐标空间坐标,记为,记为M M(x,y,z)其中其中x x、y y、z z分别叫做点分别叫做点M M的的横坐标、横坐标、纵坐标、纵坐标、竖坐标。竖坐标。ABCOxMyzx xy yz z点点M(X,Y,Z)反过来,对于一个有序实数组反过来,对于一个有序实数组(x,y,z),它也,它也唯一的对应着空间直角坐标系中的点。在唯一的对应着空间直角坐标系中的点。在x 轴、轴、y 轴和轴

9、和z 轴上依次取坐标为轴上依次取坐标为x,y和和z的点的点P、Q,RyxzMOMRQP分别过分别过P、Q、R各作一个平面,分别垂直于各作一个平面,分别垂直于x 轴、轴、y 轴和轴和z 轴,轴,这三个平面的唯一交点就是有序实数组(这三个平面的唯一交点就是有序实数组(x x,y y,z z)确定的)确定的点点M M例如在空间直角坐标系中怎样求点例如在空间直角坐标系中怎样求点M(1,2,3)的位置呢?的位置呢?方法一:分析:因为点P在第一卦限,故在x轴上取点P(1,0,0),在y轴上取点 Q(0,2,0),在z轴上取点R(0,0,3)然后过A,B,C分别作x轴,y轴,z轴的垂面,则这三个垂面的交点就

10、是点P如图所示:方法二:先画一个长方体使共顶点的三条棱长分别为1,2,3MORQxyMPz思考思考2:2:设点设点M M的坐标为(的坐标为(a a,b b,c c)过点过点M M分别作分别作xOyxOy平面、平面、yOzyOz平面、平面、xOzxOz平面的垂线,那么三个垂足的坐平面的垂线,那么三个垂足的坐标分别如何?标分别如何?ABCOxMyzA(a,b,0)A(a,b,0)B(0,b,c)B(0,b,c)C(a,0,c)C(a,0,c)思考思考2:2:x x轴、轴、y y轴、轴、z z轴上的点的坐标轴上的点的坐标有何特点?有何特点?xOyxOy平面、平面、yOzyOz平面、平面、xOzxOz

11、平面上的点的坐标有何特点?平面上的点的坐标有何特点?x x轴上的点轴上的点:(x,0,0):(x,0,0)xOyxOy平面上的点平面上的点:(x,y,0):(x,y,0)xyzOxoy平面上的点竖坐标为平面上的点竖坐标为0例如:例如:D D点坐标记为点坐标记为D(a,b,0)D(a,b,0)yoz平面上的点横坐标为平面上的点横坐标为0例如:例如:E E点坐标记为点坐标记为E(0,b,c)E(0,b,c)xoz平面上的点纵坐标为平面上的点纵坐标为0例如:例如:F F点坐标记为点坐标记为F(a,0,c)F(a,0,c)x轴上的点纵坐标竖坐为轴上的点纵坐标竖坐为0.例如:例如:A点坐标记为点坐标记为

12、A(a,0,0)z轴上的点横坐标纵坐标为轴上的点横坐标纵坐标为0.例如:例如:C C点坐标记为点坐标记为C(0,0,c)C(0,0,c)y轴上的点横坐标竖坐标为轴上的点横坐标竖坐标为0.例如:例如:B B点坐标记为点坐标记为B(0,b,0)B(0,b,0)二、坐标平面内的点二、坐标平面内的点一、坐标轴上的点一、坐标轴上的点ABCOxMyzDEF思考思考3:在空间直角坐标系中,在每个卦限内点的在空间直角坐标系中,在每个卦限内点的横,纵,竖坐标的符号分别具有怎样的特横,纵,竖坐标的符号分别具有怎样的特点?点?x xz zy y12345687O(1)点)点M(x,y,z)在第在第1卦限时,卦限时,

13、则则X0,y0,zo,(2)点)点M(x,y,z)在第在第2卦限时,卦限时,则则X0,zo,(3)点)点M(x,y,z)在第在第3卦限时,卦限时,则则X0,yo,(4)点)点M(x,y,z)在第在第4卦限时,卦限时,则则X0,yo,(5)点)点M(x,y,z)在第在第5卦限时,卦限时,则则X0,y0,zo,(6)点)点M(x,y,z)在第在第6卦限时,卦限时,则则X0,zo,(7)点)点M(x,y,z)在第在第7卦限时,卦限时,则则X0,y0,z0,y0,zo,x xz zy y12345687O思考思考3:3:设点设点M M的坐标为(的坐标为(x x,y y,z z)那么点那么点M M关于关

14、于x x轴、轴、y y轴、轴、z z轴及原点轴及原点对称的点的坐标分别是什么?对称的点的坐标分别是什么?xyzOM(x,y,z)M(x,y,z)N(x,-y,-z)N(x,-y,-z)点M(x,y,z)是空间直角坐标系中的一点,则有(1)与)与M点关于点关于X轴对称的点为轴对称的点为(x,-y,-z)(2)与)与M点关于点关于Y轴对称的点为轴对称的点为(-x,y,-z)(3)与)与M点关于点关于Z轴对称的点轴对称的点 为为(-x,-y,z)(4)与)与M点关于原点对称的点点关于原点对称的点 为为(-x,-y,-z)(5)与)与M点关于点关于xoy平面对称的点为平面对称的点为(x,y,-z)(6

15、)与)与M点关于点关于yoz平面对称的点平面对称的点 为为(-x,y,z)(7)与)与M点关于点关于xoz平面对称的点平面对称的点 为为(x,-y,z)思考思考4:4:设点设点A A(x x1 1,y y1 1,z z1 1),点),点 B B(x x2 2,y y2 2,z z2 2),则线段),则线段ABAB的中点的中点M M的坐标如何?的坐标如何?121212(,)222xxyyzzM+yxzABCABCDO例例1:1:OABCABCD是单位正方体以是单位正方体以O为原点为原点分别以射线分别以射线OA,OC,OD的方向为正方向,以线段的方向为正方向,以线段OA,OC,OD的长为单位长,建

16、立的长为单位长,建立空间直角坐标系空间直角坐标系Oxyz试说出正方体的各个顶点的坐标并指试说出正方体的各个顶点的坐标并指出哪些点在坐标轴上,哪些点在坐标平面上出哪些点在坐标轴上,哪些点在坐标平面上(0,0,0)(1,0,0)(1,1,0)(0,1,0)(1,0,1)(1,1,1)(0,1,1)(0,0,1)例例2 2、在长方体、在长方体OABC-DOABC-DA A B B C C 中,已知中,已知|OA|=3,|OC|=4|OA|=3,|OC|=4,|OD|=2|OD|=2,建立如图所示,建立如图所示的空间直角坐标系,试写出长方体各顶点的的空间直角坐标系,试写出长方体各顶点的坐标坐标.ABC

17、OxAyzBCDzxyOACDBABCPPzyABCOADCBQQxzxyO134DD 解解:把图中的钠原子分成上、中、下三层来写它们所在把图中的钠原子分成上、中、下三层来写它们所在位置的坐标位置的坐标 例例5,结晶体的基本单位称为晶胞,如图是食盐晶胞结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的示意图(可看成是八个棱长为 1 的小正方体堆积成的正的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子方体),其中色点代表钠原子,黑点代表氯原子21如图建立空间直角坐标系如图建立空间直角坐标系O-xyz后,试写出全部钠原子所在位置的后,试写出全部钠原子所在位置的坐标

18、坐标xyzO 上层的原子所在的平面平行于平面,与轴交点的竖坐标为上层的原子所在的平面平行于平面,与轴交点的竖坐标为1,所以,这五个钠原子所在位置的坐标分别是,所以,这五个钠原子所在位置的坐标分别是:(0,0,1),(),(1,0,1),(),(1,1,1),(),(0,1,1),),(,1)2121 中层的原子所在的平面平行于平面,与轴交点的竖坐标为,中层的原子所在的平面平行于平面,与轴交点的竖坐标为,所以,这四个钠原子所在位置的坐标分别是所以,这四个钠原子所在位置的坐标分别是(,0,),(),(1,),(),(,1,),(),(0,););2121212121212121 下层的原子全部在平面上,它们所下层的原子全部在平面上,它们所在位置的竖坐标全是在位置的竖坐标全是0,所以这五个钠,所以这五个钠原子所在位置的坐标分别是原子所在位置的坐标分别是(0,0,0),(1,0,0),(1,1,0),(0,1,0),2121(,0).xyzO思考:若建立如图所示空间直角坐标系那么全部钠原子所在位置的坐标不变吗 xyzOO

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(名师推荐《空间直角坐标系》课件1(北师大版必修2).ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|