1、第三章第三章单级蒸气压缩式制冷循环单级蒸气压缩式制冷循环第1页,共38页。本章主要内容本章主要内容3.1 单级蒸气压缩式制冷的理论循环3.1.1 制冷系统与循环过程3.1.2 压焓图与温熵图3.1.3 单级蒸气压缩式制冷理论循环的性能指标及其热力计算3.2 单级蒸气压缩式制冷的实际循环3.2.1 液体过冷循环3.2.2 蒸气过热循环3.2.3 回热循环3.2.4 换热及压力损失对循环性能的影响3.2.5 单级蒸气压缩式制冷实际循环在压焓图上的表示3.2.6 单级蒸气压缩式制冷实际循环的热力计算3.3 单级蒸气压缩式制冷循环性能的影响因素及工况3.3.1 单级蒸气压缩式制冷循环性能的影响因素3.
2、3.2 制冷机工况第2页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环一、制冷系统与循环过程 1.制冷系统的组成 2.制冷系统的循环过程 压缩过程 冷凝过程 节流过程 蒸发过程第3页,共38页。二、压焓图和温熵图1.压焓图一点:临界点C三区:液相区、两相区、气相区。五态:过冷液状态、饱和液状态、湿蒸气状态、饱和蒸气状态、过热蒸气状态。八线:等压线p(水平线)、等焓线h(垂直线)饱和液线x=0、饱和蒸气线x=1、无数条等干度线x、等熵线s、等比体积线v、等温线t3 31 1 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环第4页,共38页。31 单级蒸气压缩式
3、制冷的理论循环单级蒸气压缩式制冷的理论循环2.温熵图一点:临界点三区:气相区、液相区、湿蒸气区五态:过冷液体、饱和液体、饱和蒸气、过热蒸气、湿蒸气八线:等压线、等焓线、等温线、等熵线、饱和蒸气线、饱和液体线、等干度线、等容线液相区0XXTSSTK气相区两相区X=1X=0hvp第5页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环3.单级蒸气压缩式制冷理论循环的假设条件n离开蒸发器和进入压缩机的制冷剂蒸气是处于蒸发压力下的饱和蒸气;n离开冷凝器和进入膨胀阀的液体是处于冷凝压力下的饱和液体;n压缩机的压缩过程为等熵压缩;n制冷剂通过膨胀阀的节流过程为等焓过程;n制冷剂在蒸
4、发和冷凝过程中为定压过程,且没有传热温差,即制冷剂的冷凝温度等于冷却介质温度,蒸发温度等于被冷却介质的温度。n制冷剂在各设备的连接管道中流动没有流动损失,与外界不发生热量交换。第6页,共38页。1-2:压缩过程2-3:冷凝过程 3-4:膨胀过程 4-1:蒸发过程 4.单级蒸气压缩式制冷理论循环在压焓图上的表示3 31 1 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环第7页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环5.单级蒸气压缩式制冷理论循环在温熵图上的表示 12:压缩过程 22:冷却过程 23:冷凝过程 34:节流过程 41:蒸发过程0S12324
5、Tpk,tkp0,t0第8页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环三、单级蒸气压缩式制冷理论循环的性能指标及其热力计算1.性能指标制冷量(kW)单位质量制冷量(kJ/kg)单位容积制冷量(kJ/m3)理论比功(kJ/kg)单位热负荷(kJ/kg)热负荷(kW)制冷系数 热力完善度2.热力计算 Q 和P是单位时间内加给系统的热量(kW)和功率(kW);qm是流进或流出该系统的稳定质量流量(kg/s);hout 和hin分别表示流体流进系统和流出系统状态点的比焓(kJ/kg)。()moutinQPqhh第9页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气
6、压缩式制冷的理论循环3.理论功率P0(kW)和理论比功w0(kJ/kg)4.冷凝器热负荷Qk(kW)和单位热负荷qk(kJ/kg)5.制冷量Q0(kW)和单位质量制冷量q0(kJ/kg)021021()mPqhhwhh3232()kmkQqhhqhh014014()mQqhhqhh第10页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环6.单位容积制冷量qv(kJ/m3)7.制冷系数 8.热力完善度 141()/vqhhv00140021QqhhPwhh000/()cckttt第11页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环三、举例
7、制冷工质为R22,试对该理论循环进行热力计算。解:基本思路为:首先由tk得到:Pk、h3、h4 由t0得到:P0、h1、v1 由pk、p0得到:h2 然后按热力计算公式进行计算0000103555ktCtCQkW 第12页,共38页。31 单级蒸气压缩式制冷的理论循环单级蒸气压缩式制冷的理论循环0140100021001000230/vmmVmkkmkcqhhqqvqQqwhhPq wqq vQPqhhQq q单 位 质 量 制 冷 量:单 位 容 积 制 冷 量:质 量 流 量:理 论 比 功:理 论 功 率:容 积 流 量:制 冷 系 数:单 位 热 负 荷:热 负 荷:热 力 完 善 度
8、:第13页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环一、实际循环与理论循环的差异n实际循环中,离开蒸发器和进入压缩机的制冷剂蒸气往往是过热蒸气;n实际循环中,离开冷凝器和进入膨胀阀的液体往往是过冷液体;n实际循环中,压缩机的压缩过程不是等熵压缩;n实际循环中,制冷剂通过膨胀阀的节流过程不完全绝热,节流后焓值有所增加;n实际循环中,在蒸发器和冷凝器处存在传热温差,即制冷剂的冷凝温度高于冷却介质温度,蒸发温度低于被冷却介质的温度;n实际循环中,制冷剂在管道及设备内流动是存在阻力损失,并与外界存在热量交换。第14页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气
9、压缩式制冷的实际循环二、液体过冷循环 理想循环:1234 过冷循环:1234 1.过冷度 2.性能分析 (1)单位比功w0不变,单位质量制冷量q0增大,单位容积制冷量增大,制冷系数增大;(2)如果给定制冷量Q0,则质量流量qm减小,容积流量qV减小。3.结论 过冷循环是有利的 思考:采取何种措施能增大过冷度?lgp0h124343pkp033 tt第15页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环三、蒸气过热循环 理想循环:1234 过冷循环:1234 1.过热度 2.“无效过热”性能分析 (1)单位比功w0增大,单位质量制冷量q0不变,单位容积制冷量增大,制
10、冷系数减小;(2)如果给定制冷量Q0,则质量流量qm不变,容积流量qV增大。2 1ttlgp0h14pkp03122第16页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环2.“有效过热”性能分析 (1)单位比功w0增大,单位质量制冷量q0增大,单位容积制冷量增大,制冷系数的大小与制冷剂性质有关;(2)如果给定制冷量Q0,则质量流量qm减小,容积流量的变化也与制冷剂的性质有关。lgp0h14pkp031221.061.041.021.00.980.960.940.92102030R502R600aR290R134aR22R7171.0102030R290R22R717
11、0.951.05R744R502R12结论:过热循环对 制冷循环是 不利的第17页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环三、回热循环 1.回热循环流程 2.循环性能分析 (1)单位质量制冷量增加、理论比功增加,制冷系数的变化规律与制冷剂性质有关;(2)如给定制冷量Q0,则质量流量下降,容积流量的变化规律也与制冷剂性质有关 B233141DAECA 压缩机B 冷凝器 C 膨胀阀D 回热器 E 蒸发器lgp0h11224343第18页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环四、换热及压力损失对循环性能的影响 1.吸气管道 吸气管
12、道是指蒸发器出口到压缩机吸气入口之间的管道,通常认为吸气管道中的换热是无效的,它对循环性能的影响在前面的内容中已经作过详细的分析。制冷剂压力的降低将会导致压缩机吸气比容增大、压缩机的压力比增大、单位容积制冷量减小、压缩机比功增大、制冷系数下降。2.预防措施 可以通过降低制冷剂流速的方法来减小阻力,即通过增大管径来减少压力降。但是为了保证润滑油能顺利从蒸发器返回压缩机,制冷剂流速也不能太低。此外,在吸气管道上应尽量减少安装阀门、弯头等阻力部件,以减少吸气管道的局部阻力。第19页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环2.排气管道 排气管道是指压缩机出口到冷凝器入
13、口之间的管道,通常排气温度要高于环境温度,向环境散热不会影响循环系统性能,只会降低冷凝器的单位热负荷。制冷剂在排气管道中的压力降将会增加压缩机的排气压力和压缩机的比功,导致制冷系数降低。3.冷凝器 在讨论冷凝器和蒸发器中的压降对循环的影响时,必须注意比较条件。假定冷凝器出口制冷剂的压力不变,为了克服制冷剂在冷凝器中的流动阻力,必须提高进冷凝器时制冷剂的压力,必然导致压缩机排气压力升高,压缩比增大,压缩机耗功增大,制冷系数下降。第20页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环4.液体管道 液体管道是指冷凝器出口到节流阀入口之间的管道。如果冷凝温度高于环境空气的温
14、度,热量将由液体制冷剂传给周围空气,产生过冷效应,使单位质量制冷量增大;如果冷凝温度低于环境空气温度,则会导致部分液体汽化,使制冷量下降。在冷凝器出口液体过冷度不是很大的情况下,管路中的压力降会引起部分液体汽化,导致制冷量的降低。引起管路中压力降的主要因素,往往并不在于流体与管壁之间的摩擦,而是在于液体流动高度的变化。因此在系统设计时,要注意冷凝器和节流阀的相对位置,避免因位差而出现汽化现象。第21页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环5.两相管道 两相管道是指膨胀阀出口到蒸发器入口之间的管道。这段管道中制冷剂的温度通常比环境温度要低,所以热量的传递将使制
15、冷量减少。管道中的压力降对性能没有影响,因为对于给定的蒸发温度,制冷剂进入蒸发器之前的压力,必须降到相应的蒸发压力。压力的降低无论是发生在节流机构本身,还是发生在管路中,是没有什么区别的。但是如果系统中采用液体分配器,管道中的阻力大小将影响到液体制冷剂分配的均匀性,影响制冷效果。第22页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环6.蒸发器 假定不改变蒸发器出口制冷剂的状态,为了克服制冷剂在蒸发器中的流动阻力,必须提高制冷剂进蒸发器时的压力,从而提高了蒸发过程中的平均蒸发温度,使传热温差减小,要求的传热面积增大,但对循环的性能没有什么影响。如果假定不改变蒸发过程中
16、的平均温度,那么蒸发器出口制冷剂的压力应稍有降低,压缩机吸气比容增大,压缩比增大,压缩机比功增加,制冷系数下降。第23页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环7.压缩机 理论循环中,曾假定压缩机的压缩过程为等熵过程。实际上,在压缩的开始阶段,由于气缸壁温高于吸入的蒸气温度,因而此时气缸壁向蒸气传递热量;当压缩到某阶段后,蒸气温度升高,当气体温度高于气缸壁温度时,热量又由蒸气向气缸壁传递。因此整个压缩过程是个压缩指数不断变化的多方过程。另外,由于压缩机气缸中有余隙存积存在,气体经过吸、排气阀及通道处有热量交换及流动阻力,气体通过活塞与气缸壁间隙处会产生泄漏等,
17、这些因素都会使压缩机的输气量减少,制冷量下降,消耗的功率增大。第24页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环五、实际循环在ph图上的表示 1234表示理论循环,112s2s3341表示实际循环。41表示制冷剂在蒸发器中的蒸发和压降过程;11表示蒸气在回热器、吸气管中以及蒸气经过吸气阀时的加热和压降过程;12s表示压缩机内实际的多方压缩过程;2s2s表示排气经过排气阀时的压降过程;2s3表示蒸气经排气管进入冷凝器的冷却、冷凝及 压降过程;33表示液体在回热器及液体管道中的降温、降压过程 34表示节流过程。lgp0h112s2s23344第25页,共38页。32
18、 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷实际循环的简单表示 n制冷剂通过膨胀阀的节流过程为绝热等焓过程;n制冷剂在蒸发和冷凝过程中为定压过程;n制冷剂在各设备的连接管道中流动没有流动损失,与外界不发生热量交换。2lgp0h1123456第26页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环六、实际循环的热力计算 1.分类(1)设计性计算由已知工况计算循环的性能系数(2)校核性计算给定压缩机型号进行校核制冷量的计算 2.热力计算 例32 3.设计性计算 例33第27页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的
19、实际循环例32:某空调用制冷系统,制冷工质为R22,所需制冷量Q0为50kW,空调用冷水温度tc10,冷却水温度tw=32,蒸发器端部传热温差取t05,冷凝器端部传热温差取tk8,试进行循环的热力计算。计算中取液体过冷度tg5,吸气管路有害过热度tr5,压缩机的输气系数0.8,指示效率i0.8。lgp0h1132s24第28页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环lg p0h11 32 s24014010002102100/vmsiiimqhhqqvqQqwhhwwhhwPq w单位质量制冷量:单位容积制冷量:质量流量:理论比功:指示比动:理论功率:0100
20、0023/iiVmVVhiikkmkicccwcPPqq vqqQPQPqhhQq qttt指示功率:容积流量:理论容积流量:制冷系数:单位热负荷:热负荷:热力完善度:第29页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环例33:某单位现有一台106F型制冷压缩机,欲用来配一座小型冷库,库温要求为tc10,水冷冷凝器的冷却水温tw=30,试对循环进行热力计算。已知压缩机参数:缸径D100mm,行程S70mm,气缸数Z6,转速n1440r/min,蒸发器传热温差取t010,冷凝器传热温差取tk5,制冷工质为R22,蒸发器出口的过热度为5,管路过热为5,液体过冷温度为3
21、2,压缩机的输气系数0.6,指示效率i0.65,机械效率m0.9。lgp0h132s241第30页,共38页。32 单级蒸气压缩式制冷的实际循环单级蒸气压缩式制冷的实际循环0140102100000/vsiiiiqhhqqvwhhwwqwqwk0循环特性:压力比:p/p 单位质量制冷量:单位容积制冷量:理论比功:指示比动:制冷系数:实际制冷系数:10000/hVsVmVsmmimieimqqqqvq qq wq wPh2V2s121ik制冷机特性参数:理论输气量:q=D SnZ 4 实际输气量:制冷剂质量流量:制冷量:Q 理论功率:P 指示功率:P 轴功率:Ph-h 冷凝器热负荷:h=h+Q=
22、qm23(h-h)第31页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况一、性能影响因素 1.冷凝温度对循环性能的影响 由图中可以看出,当冷凝温度上升后,循环的单位质量制冷量q0减小,压缩机吸气口蒸气的比体积v1不变,所以循环的单位容积制冷量qv减小;循环的制冷量也减小;当冷凝温度上升时,制冷循环的理论比功w0增大,由于压缩机吸气口蒸气的比体积v1没有变化,所以循环的比容积功wov和理论功率P0均增大;当冷凝温度上升时,制冷循环的制冷量Q0减小、理论功率P0增加,所以循环的制冷系数是降低的。000001000hhhVvVmVvQq qqP
23、q wwq wvQPlgp0h221t0tktk3344q0w0q0w0第32页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况2.蒸发温度对循环性能的影响 (1)由图中可以看出,当蒸发温度下降后,循环的单位质量制冷量q0减小,压缩机吸气口蒸气的比体积v1增大,所以循环的单位容积制冷量qv减小,循环的制冷量也减小。(2)由图中还可以看出,当蒸发温度下降时,制冷循环的理论比功w0增大,由于压缩机吸气口蒸气的比体积v1也增大,所以无法判断循环的比容积功wov和理论功率P0的变化规律。在实际应用中发现,当压缩机的压缩比(pk/p0)约为3时达到最
24、大值。(3)由于制冷循环的制冷系数可以看成是单位质量制 冷量与理论比功的比值,所以随着蒸发温度的降低,循环的制冷系数是降低的。3.结论 当冷凝温度上升或蒸发温度降低时,制冷循环的制冷系数是降低的。反之,循环性能将得到改善。所以在实际应用中,一般会对冷凝温度进行控制,尽量不使它过高;在满足工艺要求的前提下,应尽量保持高的蒸发温度。l g p0ht 0t k3q 0 w 0 q 0w 04 4212 t kt 0 第33页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况二、制冷机工况1.工况定义 所谓工况,是指制冷压缩机工作的状况,即制冷压缩机
25、工作的条件。名义工况是考核高温、中温、低温用制冷压缩机的名义制冷能力和轴功率。在此工况下,压缩机按规定条件进行试验,并作为性能比较的基准性能工况。压缩机出厂时,机器铭牌上标出的制冷量一般是名义工况下的制冷量。标准GB/T 100792001 第34页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况 表31 有机制冷剂压缩机名义工况类型吸入压力饱和温度,排除压力饱和温度,吸入温度,环境温度,高温7.254.41)18.3357.248.92)18.335中温6.748.918.335低温31.740.618.335n为高冷凝压力工况n为低冷凝
26、压力工况表中工况制冷剂液体的过冷度为0第35页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况 表32 无机制冷剂压缩机名义工况类型吸入压力饱和温度,排除压力饱和温度,吸入温度,制冷剂液体温度,环境温度,中低温1530102532第36页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况 表33 有机制冷剂压缩机使用范围类型吸入压力饱和温度,排除压力饱和温度,压缩比高冷凝压力低冷凝压力高温1512.5256025506中温2502555255016低温4012.52550254518第37页,共38页。33 单级蒸气压缩式制冷循环性能的影响因素及工况单级蒸气压缩式制冷循环性能的影响因素及工况二、制冷机工况2.制冷工况的转换 假设制冷机名义工况下的制冷量为Q0a,任意工况下的制冷量为Q0b,式中qVh为压缩机的理论输气量(m3/s),a、b分别为名义工况和任意工况下的输气系数,qva、qvb为名义工况和任意工况下的单位容积制冷量(kJ/m3),Ki称为压缩机制冷量的换算系数。Ki与制冷剂种类、压缩机的类型、冷凝温度和蒸发温度等因素有关,在作粗略计算时,Ki值可查取相关表获得。00000hahbbaaVavbVbvbvbaiaavQqqQqqqQQK Qq第38页,共38页。