1、17.1 17.1 勾股定理勾股定理 主要元素:边、角主要元素:边、角赵爽弦图证明方法一 剪拼图法证明勾股定理:勾股定理:如果直角三角形两如果直角三角形两条条直角边长分别为直角边长分别为a、b,斜边长为斜边长为c,那么,那么a2+b2=c2 aABCbc股股勾勾S大正方形大正方形S大正方形大正方形12c2 4 ab (a+b)2 12c2 4 ab a2+2ab+b2=c2+2ab a2+b2=c2(a+b)2S小正方形小正方形 4 S直角三角形直角三角形证明方法二 面积恒等法证明毕达哥拉斯证法证明方法三学以致用1.在在RtABC中中,C=90 已知已知a=1,b=2,求求c 已知已知b=2,
2、c=4,求求a 2.在在RtABC中中,B=90,已知已知a=2,b=5,求求c 2222125cab22225221cba2222422 3acbBAC42BAC21CAB253.在RtABC中,两条边的长度分别是3和 4,求另一边的长度.分类讨论分类讨论BAC43 斜边斜边2234522437直角边直角边BAC344.如图,图中所有的三角形都是直角三角形,四边形都是正方形已知正方形A,B,C,D的面积分别是3,4,1,3,求最大正方形E的面积勾股树公元前约3000年,古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组,如3,4,5大约公元前2500年,古埃及人在建筑宏伟的金字塔和测量尼
3、罗河泛滥后的土地时,也应用过勾股定理大约公元前2000年,大禹在治水的实践中总结出了勾股术,用来确定两处水位的高低差可以说,禹是世界上有史记载的第一位与勾股定理有关的人大约在公元前1100年,周朝数学家商高就提出“勾三、股四、弦五”,记载在周髀算经中公元前3世纪,古希腊数学家欧几里德巨著几何原本中给出一个勾股定理的证明公元前5世纪,古希腊数学家毕达哥拉斯就公开发表了这一规律的证明公元2世纪的东汉时期,刘徽证明了勾股定理大约公元前250年,赵爽对周髀算经内的勾股定理作出了详细注释和证明2002年在北京召开的国际数学家大会,就以赵爽弦图作为大会会徽的图案在探索勾股定理的过程中,你有什么感悟和欣赏.
4、如图,以直角三角形各边为直径向外作半圆,如图,以直角三角形各边为直径向外作半圆,则半圆则半圆A,B,C的面积关系为的面积关系为根据勾股定理根据勾股定理,a2+b2=c2 得到得到半圆半圆A,B,C的面积关系的面积关系为为SA+SB=SC圆的面积公式:圆的面积公式:,S=r2 数形结合数形结合放眼未来,华罗庚曾设想:向太空发射一种图形,因为这种图形在几千年前就已经被人类所认识,如果外星人是“文明人”,也必定认识这种图形.从直角三角形的各边向外作正方形能否推广到从各边向外作等边三角形(正n边形)吗?作业:(1)整理课堂上所提到的勾股定理的证明方法;(2)教材28页,1、2、3(3)通过上网等方式查找勾股定理的有关史料、趣事及其他证明方法