1、一、情景导入,初步认识一、情景导入,初步认识问题问题1 1 通过上节课的学习,请谈谈列方程解应用题通过上节课的学习,请谈谈列方程解应用题的一般步骤是怎样的?关键是什么?的一般步骤是怎样的?关键是什么?步骤:审题;设未知数;列方程;解方程;答一元二次方程一元二次方程 第二课时第二课时与与实际问题实际问题学习目标:学习目标:1 1、进一步掌握根据实际问题中的数量关、进一步掌握根据实际问题中的数量关系,正确列出一元二次方程。系,正确列出一元二次方程。2 2、掌握面积法建立一元二次方程的数学掌握面积法建立一元二次方程的数学模型并运用它解决实际问题模型并运用它解决实际问题认真看课本认真看课本19-201
2、9-20页探究页探究3 3前的内容,思考下列问题:前的内容,思考下列问题:1.1.试着完成试着完成2020页的探究页的探究3 3。2.2.试着完成试着完成2121页的思考。页的思考。3.3.完成完成2121页云图中的问题。页云图中的问题。6 6分钟后,比一比谁学的好!分钟后,比一比谁学的好!自学检测自学检测探究探究3 3 如图,要设计一本书的封面,封面长如图,要设计一本书的封面,封面长27cm27cm,宽,宽21cm21cm,正中央是一个与整个封面长宽,正中央是一个与整个封面长宽比例相同的矩形。如果要使四周的彩色边衬所占比例相同的矩形。如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下
3、边衬等宽,面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位)?(结果保留小数点后一位)?7:9)3(7:)3(972121:92721aaaa解:封面的长宽之比是解:封面的长宽之比是2727:21=9:721=9:7,中央的,中央的矩形的长宽之比也应是矩形的长宽之比也应是9:7.9:7.设中央的矩形的设中央的矩形的长和宽分别是长和宽分别是9acm9acm和和7acm7acm,由此得上、下边,由此得上、下边衬与左、右边衬的宽度之比是衬与左、右边衬的宽度之比是设上、下边衬的宽均为设上、下边衬的宽均为9x
4、cm9xcm,左、右边衬的,左、右边衬的宽均为宽均为7xcm7xcm,则中央的矩形的长为(,则中央的矩形的长为(27-18x27-18x)cmcm,宽为(,宽为(21-14x21-14x)cmcm,依题意得,依题意得21274314211827xx2 2、现有长现有长19cm19cm,宽为,宽为15cm15cm长方形硬纸片,将长方形硬纸片,将它的四角各剪去一个同样大小的正方形后,它的四角各剪去一个同样大小的正方形后,再折成一个无盖的长方形纸盒,要使纸盒的再折成一个无盖的长方形纸盒,要使纸盒的底面积为底面积为77cm77cm,问剪去的小正方形的边长应,问剪去的小正方形的边长应是多少是多少?解:设
5、剪去的小正方形的边长为解:设剪去的小正方形的边长为xcmxcm,则纸盒的,则纸盒的长为(长为(19-2x19-2x),宽为(),宽为(15-2x15-2x)cmcm,依题意得,依题意得(19-2x19-2x)()(15-2x15-2x)=77 =77 整理得:整理得:x-17x+52=0 x-17x+52=0解得:解得:x x1 1=3=3,x x2 2=14=14(舍去)(舍去)即剪去的小正方形的边长应为即剪去的小正方形的边长应为3cm3cm小组合作小组合作 1 1、有一张长、有一张长6 6尺,宽尺,宽3 3尺的长方形桌子,现用一尺的长方形桌子,现用一块长方形台布铺在桌面上,如果台布的面积是
6、桌面块长方形台布铺在桌面上,如果台布的面积是桌面面积的面积的2 2倍,且四周垂下的长度相同,试求这块台布倍,且四周垂下的长度相同,试求这块台布的长和宽各是多少?(精确到的长和宽各是多少?(精确到0.10.1尺)尺)解:设四周垂下的宽度为解:设四周垂下的宽度为x x尺时,则台布的长为(尺时,则台布的长为(2x+62x+6)尺,宽为(尺,宽为(2x+32x+3)尺,依题意得:)尺,依题意得:(6+2x6+2x)()(3+2x3+2x)=2=26 63 3 整理方程得:整理方程得:2x+9x-9=02x+9x-9=0 解得:解得:x x1 10.840.84,x x2 2-5.3-5.3(不合题意,
7、舍去)(不合题意,舍去)即这块台布的长约为即这块台布的长约为7.77.7尺,宽约为尺,宽约为4.74.7尺尺2 2、如右图是长方形鸡场的平面示意图。一、如右图是长方形鸡场的平面示意图。一边靠墙,另三边用竹篱笆围成,且竹篱边靠墙,另三边用竹篱笆围成,且竹篱笆总长为笆总长为35m35m。(1 1)若所围的面积为)若所围的面积为150m150m,试求,试求此长方形鸡场的长和宽;此长方形鸡场的长和宽;235xABCD解:设BC=xcm,则AB=CD=,依题意可列方程:解方程得:x1=20,x2=15 当BC=x=20m时,AB=CD=7.5m,当BC=15m时,AB=CD=10m,即这个长方形鸡场的长
8、与宽分别为20m和7.5m或15m和10m。150235xx(2 2)如果墙长为)如果墙长为18m18m,则(,则(1 1)中长方形鸡场)中长方形鸡场的长和宽分别是多少?的长和宽分别是多少?解:当墙长为18m时,显然BC=20m时,所围成的鸡场会在靠墙处留下一个缺口,不合题意,应舍去,此时所围成的长方形鸡场的长与宽值能是15m和10m;(3 3)能围成面积为)能围成面积为160m160m的长方形鸡场的长方形鸡场吗?说说你的理由。吗?说说你的理由。235x解:不能围成面积为160m的长方形鸡场,理由如下:设BC=xm,由(1)知AB=,从而有 ,方程整理为:x-35x+320=0.此时=35-4
9、1320=-550,原方程没有实数根,从而知用35m的篱笆按图示方式不能围成面积为160m的鸡场。160235xx课堂小结课堂小结 通过本节课的学习,谈谈你对列一元二次方程解决实际问题的体会和收获?你认为有哪些地方需要特别注意?达标检测达标检测371.1.直角三角形的两条直角边的和为直角三角形的两条直角边的和为7 7,面积是,面积是6 6,则斜边长为(则斜边长为()B38A.B.5 C.D.72.2.从正方形铁皮的一边切去一个从正方形铁皮的一边切去一个2cm2cm宽的长方形,若宽的长方形,若余下的长方形的面积为余下的长方形的面积为48cm48cm,则原来正方形的铁,则原来正方形的铁皮的面积为(
10、皮的面积为()。)。64cm3.3.如图,在一幅矩形地毯的四周镶有宽度相同如图,在一幅矩形地毯的四周镶有宽度相同的花边,地毯中间的矩形图案的长为的花边,地毯中间的矩形图案的长为6m6m,宽,宽为为3m3m,若整个地毯的面积为,若整个地毯的面积为40m40m,求花边的,求花边的宽。宽。解:设花边的宽为解:设花边的宽为xcmxcm,依题意得:,依题意得:(6+2x6+2x)()(3+2x3+2x)=40=40 解得:解得:x x1 1=1=1,x x2 2=-=-(应舍去)(应舍去)即花边的宽度为即花边的宽度为1m1m。211布置作业:v课本:P22 8、9、10 v大册子P15-17 v预习课本
11、P20-21 4.4.某种服装进价每件某种服装进价每件6060元,据市场调查,这种服装元,据市场调查,这种服装按按8080元销售时,每月可卖出元销售时,每月可卖出400400件,若销售价每涨件,若销售价每涨1 1元,就要少卖出元,就要少卖出5 5件,如果服装店预计在销售这件,如果服装店预计在销售这种服装时每月获利种服装时每月获利1200012000元,那么这种服装的销售元,那么这种服装的销售价应定为多少时,可使顾客更实惠?价应定为多少时,可使顾客更实惠?解:设销售价提高了解:设销售价提高了x x个个1 1元,则每月应少卖出元,则每月应少卖出5x5x件,件,依题意可列方程:依题意可列方程:(80+x-680+x-6)(400-5x400-5x)=12000=12000 解方程得:解方程得:x x1 1=20=20,x x2 2=40=40 显然,当显然,当x=40 x=40时,销售价为时,销售价为120120元;元;当当x=20 x=20时,销售价为时,销售价为100100元,元,要使顾客得到实惠,则销售价越低越好,要使顾客得到实惠,则销售价越低越好,故这种服装的销售价应定为故这种服装的销售价应定为100100元合适。元合适。