1、 电磁感应及应用 电磁感应及应用一、单选题一、单选题1将闭合线圈垂直放置在磁场中,若磁感强度随时间变化规律如下图所示,其中能在线圈中产生恒定感应电流的是()ABCD2如图,载有固定条形磁铁的小车沿倾斜直轨道依次穿过三个完全相同且等间距排列的线圈,该过程中 a、b 两点间电压 U 随时间 t 变化的图线可能为()ABCD3如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨相同的光滑金属棒 P、Q 静止在导轨上。=0时用水平恒力 F 向右拉动金属棒 Q 运动过程中金属棒 PQ 始终与导轨垂直并接触良好金属棒 P、Q 与导轨构成的回路中的电流用 I 表示、磁通量用中表示:金属
2、棒Q 的加速度用 a 表示,其相对金属棒 P 的速度用表示。下列关于 I、a、与时间 t 的关系图像中正确的是()ABCD4如图所示,匀强磁场中水平放置两足够长的光滑平行金属导轨,导轨的左侧接有黑箱。t=0 时刻起电阻为 R 的导体棒 ab 以一定的初速度放上导轨向右运动,运动过程中棒始终与导轨垂直且与导轨电接触良好,不计导轨电阻。则()A若黑箱中是电池,棒的最终速度与初速度有关B若黑箱中是线圈,棒做简谐运动C若黑箱中是电阻,棒的速度随位移均匀减小D若黑箱中是电容器,棒的最终速度与初速度无关5如图所示,面积为 S 闭合线圈放在磁场中,线圈平面与磁场垂直,磁场的磁感应强度 B 随时间 t的变化规
3、律是=sin2,则在一个周期内线圈中产生感应电动势最大的时刻(含 0 与 T 时刻)是()A0、0.25B0.5、0.75C0、0.5、TD0.25、0.5、T6如图所示,有两根电阻不计、竖直固定的光滑金属导轨(足够长),其间距为 d,上端接一阻值为R 的电阻,水平虚线 CD(足够高)下方区域存在磁感应强度大小为 B、方向水平向里的匀强磁场。现将一电阻为 R、长度为 d 的导体棒从虚线 CD 上方 ab 处由静止释放,导体棒下落时间 t、通过虚线CD 时恰好开始匀速进入磁场,此时立即对导体棒施加一个与导体棒所受重力大小相等、方向竖直向上的恒定拉力。已知重力加速度大小为 g,导体棒始终与导轨垂直
4、并接触良好,不计空气阻力。下列说法正确的是()A导体棒到达虚线 CD 时的速度大小为2B导体棒开始下落时距虚线 CD 的高度为2C导体棒的质量为22D导体棒从虚线 CD 运动到最低点的过程中,导体棒上产生的焦耳热为222387如图是一边长为 L 的正方形金属框放在光滑水平面上的俯视图,虚线右侧存在竖直向上的匀强磁场=0时刻,金属框在水平拉力 F 作用下从图示位置由静止开始,以垂直于磁场边界的恒定加速度进入磁场,1时刻线框全部进入磁场。则01时间内金属框中电流 i、电量 q、运动速度 v 和拉力F 随位移 x 或时间 t 变化关系可能正确的是()ABCD8如图所示,在竖直空间的一圆盘内有垂直圆盘
5、平面向下的匀强磁场,磁感应强度为,圆盘半径为,长度为的金属棒在圆盘内绕着圆心做角速度为的匀速运动,在圆盘左侧连接一电容器,电容器内有一电荷量为的正电荷,若该正电荷处于静止状态,电容器两极板的距离为,电容量为,下列说法不正确的是()A电容器带电量为22B从上往下看,金属棒沿逆时针方向切割C将电容器两极板的距离变为2,该正电荷位置不动D该正电荷的质量为229如图所示,水平放置的平行光滑导轨左端连接开关 K 和电源,右端接有理想电压表。匀强磁场垂直于导轨所在的平面。ab、cd 两根导体棒单位长度电阻相同、单位长度质量也相同,ab 垂直于导轨,cd 与导轨成 60角。两棒的端点恰在导轨上,且与导轨接触
6、良好,除导体棒外,其余电阻不计。下列说法正确的是()A闭合开关 K 瞬间,两棒所受安培力大小相等B闭合开关 K 瞬间,两棒加速度大小相等C断开开关 K,让两棒以相同的速度水平向右切割磁感线,电压表无示数D断开开关 K,固定 ab,让 cd 棒以速度 v 沿导轨向右运动时电压表示数为1;固定 cd,让 ab棒以速度 v 沿导轨向右运动时电压表示数为2,则1=2二、多选题二、多选题10如图所示的水平导轨足够长,两导轨所在的区域处于竖直向下的匀强磁场中,导轨间距为 L,光滑金属棒 a、b 质量分别为 4m 和 m,均垂直放置在导轨上,且与导轨接触良好。一根不可伸长的绝缘轻质细线一端系在金属棒 b 的
7、中点,另一端绕过光滑的定滑轮与质量也为 m 重物 c 相连,不计滑轮的质量和摩擦,线的水平部分与导轨平行且足够长,c 离地面足够高,重力加速度为 g。由静止释放重物 c 后,两金属棒始终处与导轨垂直并沿导轨向右运动,已知金属棒 a、b 的电阻均为 R,导轨电阻忽略不计,则在金属棒 a、b 达到稳定状态后()A金属棒 a、b 产生的电动势大小相同B沿磁场方向往下看,线框中的电流方向为逆时针C导体棒 a 的加速度大小为13gD细线中的拉力大小为56mg11如图所示,在光滑的水平地面上放有质量为 m 的 U 形导体框,导体框的电阻可忽略不计。一电阻为 R、质量也为 m 的导体棒 CD 两端置于导体框
8、上,与导体框构成矩形回路,矩形回路的宽度为L、长为 s;在 U 形导体框右侧有一竖直向下足够大的匀强磁场,磁感应强度大小为 B,磁场边界与EF 平行,且与 EF 间距为0。现对导体棒 CD 施加一水平向右的恒力 F 使 U 形导体框和导体棒 CD以相同加速度向右运动,当 EF 刚进入磁场 U 形导体框立即匀速运动,而导体棒 CD 继续加速运动。已知重力加速度为 g,导体棒 CD 与 U 形导体框间的最大静摩擦力等于滑动摩擦力,导体棒与框始终接触良好。下列判断正确的是()AEF 在进入磁场以前导体棒 CD 受到导体框的摩擦力大小 FBEF 在刚进入磁场以后导体棒 CD 受到导体框的摩擦力大小=2
9、20C导体棒 CD 与 U 形导体框都进入磁场,经过足够长时间后两者可能都做匀速运动D导体棒 CD 与 U 形导体框都进入磁场,经过足够长时间后两者都做匀加速运动12如图所示,间距=1、足够长的平行金属导轨固定在绝缘水平面上,其左端接一阻值=1的定值电阻。直线 MN 垂直于导轨,在其左侧面积=0.52的圆形区域内存在垂直于导轨所在平面向里的磁场,磁感应强度 B 随时间的变化关系为=6(),在其右侧(含边界 MN)存在磁感应强度大小0=1、方向垂直导轨所在平面向外的匀强磁场。=0时,某金属棒从 MN 处以0=8 的初速度开始水平向右运动,已知金属棒质量=1,与导轨之间的动摩擦因数=0.2,导轨、
10、金属棒电阻不计且金属棒与导轨始终垂直且接触良好,重力加速度=10 2,下列说法正确的是()A=0时,闭合回路中有大小为 5A 的顺时针方向的电流B闭合回路中一直存在顺时针方向的电流C金属棒在运动过程中受到的安培力方向先向左再向右D金属棒最终将以 1m/s 的速度匀速运动13两根相距为 L 的足够长的金属弯角光滑导轨如图所示放置,它们一部分在同一水平面内,另一部分组成与水平面夹角为的斜面。质量均为 m,电阻均为 R 的金属细杆 ab、cd 与导轨垂直接触形成闭合回路,导轨的电阻不计。整个装置处于磁感应强度大小为 B,方向竖直向上的匀强磁场中,当 cd 杆以速度 v 沿斜面导轨匀速下滑时,ab 杆
11、在与导轨平行的水平拉力 F 作用下,恰好处于静止状态。金属细杆 ab、cd 运动过程中均始终与导轨垂直并与两导轨接触良好,取重力加速度为 g,则下列说法正确的是()Aab 杆所受拉力 F 的大小为tanB回路中的电流为2C回路中电流的总功率为sinD若撤去外力 F,金属细杆 ab 始终在水平轨道上运动、cd 始终在斜面轨道上运动,则最终稳定时 ab、cd 都做匀速直线运动三、综合题三、综合题14某风速实验装置由风杯组系统(甲图)和电磁信号产生系统(乙图)两部分组成电磁信号产生器由圆形匀强磁场和固定于风轮转轴上的导体棒 OA 组成(O 点连接风轮转轴),磁场半径为 L,磁感应强度大小为 B,方向
12、垂直纸面向里,导体棒 OA 长为 1.5L,电阻为 r,风推动风杯组绕水平轴顺时针匀速转动,风杯中心到转轴距离为 2L,导体棒每转一周 A 端与弹性簧片接触一次,接触时产生的电流强度恒为 I。图中电阻为 R,其余电阻不计。求:(1)当导体棒与弹性簧片接触时,OA 两端电势差 UOA;(2)风杯的速率 v。15如图所示,矩形线圈 abcd 匝数为 N,总电阻为 R,ab 边和 ad 边长分别为 L 和 3L,O、O为线圈上两点,OO与 cd 边平行且与 cd 边的距离为 L,OO左侧空间有垂直纸面向里的匀强磁场,磁感应强度大小为 B。现使线圈绕 OO以角速度 匀速转动,求:(1)从图示位置开始转
13、过 60 过程中通过导线截面电荷量 q;(2)线圈在转动一周过程中产生的焦耳热 Q。答案解析部分答案解析部分1【答案】A2【答案】A3【答案】D4【答案】C5【答案】C6【答案】D7【答案】D8【答案】C9【答案】A10【答案】B,D11【答案】B,D12【答案】A,C,D13【答案】A,C14【答案】(1)解:根据题意可知,当导体棒在磁场中顺时针转动时,相当于电源,且 O 端相当于电源的负极,则根据欧姆定律可知,OA 两端电势差 UOA 数值上等于电路中的外电压,则有=(2)解:依题意有,电源电动势为=122结合闭合电路的欧姆定律有=122=(+)解得=2I(r+R)BL2则风杯的速率为 v=2L=4I(R+r)BL15【答案】(1)解:设线圈转过 60 的过程中产生的感应电动势为,经历的时间为t,由法拉第电磁感应定律有=其中磁通量的变化量=2222cos60=2通过导线截面的电荷量=联立解得=2(2)解:线圈在磁场中转动时产生的电动势随时间变化的规律如答图所示,设 ab 边、cd 边在磁场中转动产生电动势的最大值分别为 E1m、E2m,有效值分别为 E1、E2,则1=2222=22产生的热量=21+22联立解得=5(2)22