1、同 学 们 好!9.1 加法原理和乘法原理加法原理和乘法原理 9.1 加法原理和乘法原理加法原理和乘法原理问题问题 1.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车有4 班,汽车有2班,轮船有3班。那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法,第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以 从甲地到乙地共有 4+2+3=9 种方法。9.1 加法原理和乘法原理加法原理和乘法原理 2.如图,由A村去B村的道路有3条,由B村去C村的道路有2条。从A村经B村去C村,共有多少种不同的走
2、法?A村B村C村北南中北南 分析:从A村经 B村去C村有2步,第一步,由A村去B村有3种方法,第二步,由B村去C村有3种方法,所以 从A村经 B村去C村共有 3 2=6 种不同的方法。9.1 加法原理和乘法原理加法原理和乘法原理加法原理加法原理 做一件事情,完成它可以有做一件事情,完成它可以有n类办法类办法,在第一在第一类办法中有类办法中有m1种不同的方法种不同的方法,在第二类办法中有在第二类办法中有m2种不种不同的方法,同的方法,在第,在第n类办法中有类办法中有mn种不同的方法。种不同的方法。那么完成这件事共有那么完成这件事共有 N=m1+m2+mn种不同的方法。种不同的方法。乘法原理乘法原
3、理 做一件事情,完成它需要分成做一件事情,完成它需要分成n个步骤,做个步骤,做第一步有第一步有m1种不同的方法,做第二步有种不同的方法,做第二步有m2种不同的方种不同的方法,法,做第,做第n步有步有mn种不同的方法,那么完成这件种不同的方法,那么完成这件事有事有 N=m1m2mn种不同的方法种不同的方法。9.1 加法原理和乘法原理加法原理和乘法原理 例题例题 1.某班级有男三好学生5人,女三好学生4人。(1)从中任选一人去领奖,有多少种不同的选法?(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?分析:(1)完成从三好学生中任选一人去领奖这件事,共有2类办法,第一类办法,从男
4、三好学生中任选一人,共有 m1=5 种不同的方法;第二类办法,从女三好学生中任选一人,共有 m2=4 种不同的方法;所以,根据加法原理,得到不同选法种数共有 N=5+4=9 种。9.1 加法原理和乘法原理加法原理和乘法原理 例题例题 1.某班级有男三好学生5人,女三好学生4人。(1)从中任选一人去领奖,有多少种不同的选法?(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?分析:(2)完成从三好学生中任选男、女各一人去参加座谈会这件事,需分2步完成,第一步,选一名男三好学生,有 m1=5 种方法;第二步,选一名女三好学生,有 m2=4 种方法;所以,根据乘法原理,得到不同选法种
5、数共有 N=5 4=20 种。点评点评:解题的关键是从总体上看做这件事情是“分类完成”,还是“分步完成”。“分类完成”用“加法原理”;“分步完成”用“乘法原理”。9.1 加法原理和乘法原理加法原理和乘法原理2.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?分析1:按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别是 1个,2个,3个,4个,5个,6个,7 个,8 个.则根据加法原理共有 1+2+3+4+5+6+7+8=36(个).分析2:按十位数字是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别是 8个,7个,6个,5个,4个
6、,3个,2个,1个.则根据加法原理共有 8+7+6+5+4+3+2+1=36(个)9.1 加法原理和乘法原理加法原理和乘法原理 3.一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成,可以设置多少种三位数的密码(各位上的数字允许重复)?首位数字不为0的密码数是多少?首位数字是0的密码数又是多少?分析:按密码位数,从左到右依次设置第一位、第二位、第三位,需分为三步完成;第一步,m1=10;第二步,m2=10;第三步,m2=10.根据乘法原理,共可以设置 N=101010=103 种三位数的密码。答:首位数字不为0的密码数是 N=91010=9102 种,首位数字是0的
7、密码数是 N=11010=102 种。由此可以看出,首位数字不为0的密码数与首位数字是0的密码数之和等于密码总数。9.1 加法原理和乘法原理加法原理和乘法原理3.一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9十个数字组成,可以设置多少种三位数的密码(各位上的数字允许重复)?首位数字不为0的密码数是多少?首位数字是0的密码数又是多少?问:若设置四位、五位、六位、十位等密码,密码数分别有多少种?答:它们的密码种数依次是 104,105,106,种。9.1 加法原理和乘法原理加法原理和乘法原理 点评点评:加法原理中的“分类”要全面,不能遗漏;但也不能重复、交叉;“类”与“类之间是
8、并列的、互斥的、独立的,也就是说,完成一件事情,每次只能选择其中的一类办法中的某一种方法。若完成某件事情有n类办法,即它们两两的交为空集,n类的并为全集。乘法原理中的“分步”程序要正确。“步”与“步”之间是连续的,不间断的,缺一不可;但也不能重复、交叉;若完成某件事情需n步,则必须且只需依次完成这n个步骤后,这件事情才算完成。在运用“加法原理、乘法原理”处理具体应用题时,除要弄清是“分类”还是“分步”外,还要搞清楚“分类”或“分步”的具体标准。在“分类”或“分步”过程中,标准必须一致标准必须一致,才能保证不重复、不遗漏。9.1 加法原理和乘法原理加法原理和乘法原理 课堂练习课堂练习 1.如图,
9、要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9.1 加法原理和乘法原理加法原理和乘法原理 课堂练习课堂练习 1.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3 种,第二步,m2=2 种,第三步,m3=1 种,第四步,m4=1 种,所以根据乘法原理,得到不同的涂色方案种数共有 N=3 2 11=6 种。9.1 加法原理和乘法原理加法原理和乘法原
10、理 课堂练习课堂练习 1.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?问:若用2色、3色、4色、5色等,结果又怎样呢?答:它们的涂色方案种数分别是 0,4322=48,5433=180种等。2.如图,该电路,从A到B共有多少条不同的线路可通电?AB9.1 加法原理和乘法原理加法原理和乘法原理解:从总体上看由A到B的通电线路可分三类,第一类,m1=3 条 第二类,m2=1 条 第三类,m3=22=4,条 所以,根据加法原理,从A到B共有 N=3+1+4=8 条不同的线路可通电。当然,也可以把并联的
11、4个看成一类,这样也可分2类求解。.ABABm1m1m2m2mnmn点评点评:我们可以把加法原理看成“并联电路”;乘法原理看成“串联电路”。如图:9.1 加法原理和乘法原理加法原理和乘法原理3.如图,一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?9.1 加法原理和乘法原理加法原理和乘法原理 解:如图,从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,第一类,m1=12=2 条 第二类,m2=12=2 条 第三类,m3=12=2 条 所以,根据加法原理,从顶点A到顶点C1最近路线共有 N=2+2+2=6 条。9.1 加法原理和乘法
12、原理加法原理和乘法原理 4.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?甲地乙地丙地丁地 解:从总体上看,由甲到丙有两类不同的走法,第一类,由甲经乙去丙,又需分两步,所以 m1=23=6 种不同的走法;第二类,由甲经丁去丙,也需分两步,所以 m2=42=8 种不同的走法;所以从甲地到丙地共有 N=6+8=14 种不同的走法。9.1 加法原理和乘法原理加法原理和乘法原理 请同学们回答下面的问题请同学们回答下面的问题:1.本节课学习了那些主要内容?答答:加法原理和乘法原理。2.加法原理和乘法原理的共
13、同点是什么?不同点什么?答答:共同点是,它们都是研究完成一件事情,共有多少种不同的方法。不同点是,它们研究完成一件事情的方式不同,加法原理是“分类完成”,即任何一类办法中的任何一个方法都能完成这件事。乘法原理是“分步完成”,即这些方法需要分步,各个步骤顺次相依,且每一步都完成了,才能完成这件事情。这也是本节课的重点。9.1 加法原理和乘法原理加法原理和乘法原理 请同学们回答下面的问题请同学们回答下面的问题:3.何时用加法原理、乘法原理里呢?答答:完成一件事情有n类方法,若每一类方法中的任何一种方法均能将这件事情从头至尾完成,则计算完成这件事情的方法总数用加法原理。完成一件事情有n个步骤,若每一
14、步的任何一种方法只能完成这件事的一部分,并且必须且只需完成互相独立的这n步后,才能完成这件事,则计算完成这件事的方法总数用乘法原理。9.1 加法原理和乘法原理加法原理和乘法原理 结束语结束语 两大原理妙无穷两大原理妙无穷,茫茫数理此中求茫茫数理此中求;万万千千说不尽万万千千说不尽,运用解题任驰骋运用解题任驰骋。9.1 加法原理和乘法原理加法原理和乘法原理 布置作业布置作业:p.222 练习 第3,4,6,7题9.1 加法原理和乘法原理加法原理和乘法原理9.1 加法原理和乘法原理加法原理和乘法原理甲地乙地丙地丁地随着年岁的叠加,我们会渐渐发现:越是有智慧的人,越是谦虚,因为昂头的只是稗子,低头的
15、才是稻子;越是富有的人,越是高贵,因为真正的富裕是灵魂上的高贵以及精神世界的富足;越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。随着沧桑的累积,我们也会慢慢懂得:成功的路,其实并不拥挤,因为能够坚持到底的人实在太少;所有优秀的人,其实就是活得很努力的人,所谓的胜利,其实最后就是自身价值观的胜利。人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;生活,只有将尘世况味种种尝遍,才能熬出头。这世间,从来没有最好,只有更好。每天,总想要努力醒得比太阳还早,因为总觉得世间万物,太阳是最能赐人力量和能量的。每当面对喷薄的日出,心中的太阳随之冉冉腾起,生命之
16、火熊熊燃烧,生活的热情就会光芒四射。我真的难以想象,那些从来不早起的人,一生到底能够看到几回日升?那些从来没有良好习惯的人,活到最后到底该是多么的遗憾与愧疚?曾国藩说:早晨不起,误一天的事;幼时不学,误一生的事。尼采也说:每一个不曾起舞的日子,都是对生命的辜负。光阴易逝,岂容我待?越是努力的人,越是没有时间抱怨,越是没有工夫颓丧。每当走在黎明的曙光里,看到那些兢兢业业清洁城市的“美容师”,我就会由衷地欣赏并在心底赞叹他们,因为他们活得很努力很认真。每当看见那些奔跑在朝霞绚烂里的晨练者,我就会从心里为他们竖起大拇指,因为他们给自己力量的同时,也赠予他人能量。我总觉得:你可以不优秀,但你必须有认真
17、的态度;你可以不成功,但你必须努力。这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。我也始终认为:一个活得很努力的人,自带光芒万丈;一个人认真的样子,比任何时候都要美好;一个能够自律自控的人,他的人生也就成功了大半。世间每一种的好,从来都只为懂得努力的人盛装而来。有时候,我真的感觉,人生的另一个名字应该叫做努力,努力了就会无悔,努力了就会无愧;生活的另一种说法应该叫做煎熬,熬过了漫漫黑夜,天就亮了,熬过了萧萧冬日,春天就来了。人生不易,越努力越幸运;余生不长,越珍惜越精彩。人生,是一本太仓促的书,越认真越深刻;生命,是一条无名的河,越往前越深邃。愿你不要为已逝的年华叹息,不要为前路的茫茫而
18、裹足不前愿你相信所有的坚持总能奏响黎明的号角,所有的努力总能孕育硕果的盛驾光临。愿你坚信越是成功的人越是不允许自己颓废散漫,越是优秀的人越是努力生活中很多时候,我们遇到一些复杂的情况,会很容易被眼前的障碍所蒙蔽,找不到解决问题的方法。这时候,如果能从当前的环境脱离出来,从一个新角度去解决问题,也许就会柳暗花明。一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。苦思良久后终得一法:每次出门前把WiFi修改成无密码,然后放心出门每次回来都能看到十几个人捧着手机蹲在自家门口,从此无忧。护院,未必一定要养狗换个角度想问题,结果大不同。一位大爷到菜市场买菜,挑了3个西红柿
19、到到秤盘,摊主秤了下:“一斤半3块7。”大爷:“做汤不用那么多。”去掉了最大的西红柿。摊主:“一斤二两,3块。”正当身边人想提醒大爷注意秤时,大爷从容的掏出了七毛钱,拿起刚刚去掉的那个大的西红柿,潇洒地换种算法,独辟蹊径,你会发现解决问题的另一个方法。生活中,我们特别容易陷入非A即B的思维死角,但其实,遭遇两难困境时换个角度思考,也许就会明白:路的旁边还有路。一个鱼塘新开张,钓费100块。钓了一整天没钓到鱼,老板说凡是没钓到的就送一只鸡。很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!觉得老板很够意思。后来,钓鱼场看门大爷告诉大家,老板本来就是个养鸡专业户,这鱼塘本来就没鱼。巧妙的去库存
20、,还让顾客心甘情愿买单。新时代,做营销,必须打破传统思维。孩子不愿意做爸爸留的课外作业,于是爸爸灵机一动说:儿子,我来做作业,你来检查如何?孩子高兴的答应了,并且把爸爸的“作业”认真的检查了一遍,还列出算式给爸爸讲解了一遍不过他可能怎么也不明白为什么爸爸所有作业都做错了。巧妙转换角色,后退一步,有时候是另一种前进。一个博士群里有人提问:一滴水从很高很高的地方自由落体下来,砸到人会不会砸伤?或砸死?群里一下就热闹起来,各种公式,各种假设,各种阻力,重力,加速度的计算,足足讨论了近一个小时 后来,一个不小心进错群的人默默问了一句:你们没有淋过雨吗 人们常常容易被日常思维所禁锢,而忘却了最简单也是最直接的路有两个年轻人,大学毕业后一起到广州闯天下。