任意角PPT优秀课件11.ppt

上传人(卖家):三亚风情 文档编号:3459465 上传时间:2022-09-02 格式:PPT 页数:35 大小:1.17MB
下载 相关 举报
任意角PPT优秀课件11.ppt_第1页
第1页 / 共35页
任意角PPT优秀课件11.ppt_第2页
第2页 / 共35页
任意角PPT优秀课件11.ppt_第3页
第3页 / 共35页
任意角PPT优秀课件11.ppt_第4页
第4页 / 共35页
任意角PPT优秀课件11.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、新课程数学必修新课程数学必修 新 课 引 入1.在初中角是如何定义的?定义1:有公共端点的两条射线组成的几何图形叫做角。顶顶点点边边边边定义2:平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角。AB顶顶点点始边始边终边终边高中高中(运动地)oAB始边终边顶点定义2:平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角。2 2生活中很多实例会不在生活中很多实例会不在 000 0,360,3600 0 这个范围内。这个范围内。如:如:体操运动员转体体操运动员转体720720,跳水运动员向内、向外转体跳水运动员向内、向外转体10801080 花样游泳中,运动员旋转的周数旋

2、转的周数如何用角度来表示?转体一周半指的是多少度?这些例子所提到的角不仅不在范这些例子所提到的角不仅不在范围围000 0,360,3600 0 内,而且方向不同,内,而且方向不同,有必要将角的概念推广到任意角,想有必要将角的概念推广到任意角,想想用什么办法才能推广到任意角想用什么办法才能推广到任意角?运 动问题提出问题提出1.1.角是平面几何中的一个基本图形,角是角是平面几何中的一个基本图形,角是可以度量其大小的可以度量其大小的.在平面几何中,角的取在平面几何中,角的取值范围如何?值范围如何?2.2.体操是力与美的结合,也充满了角的概体操是力与美的结合,也充满了角的概念念20022002年年1

3、111月月2222日,在匈牙利德布勒森日,在匈牙利德布勒森举行的第举行的第3636届世界体操锦标赛中,届世界体操锦标赛中,“李小李小鹏跳鹏跳”“踺子后手翻转体踺子后手翻转体180180度接直体度接直体前空翻转体前空翻转体900900度度”,震惊四座,这里的转,震惊四座,这里的转体体180180度、度、转体转体900900度就是一个角的概念度就是一个角的概念.3.3.过去我们学习了过去我们学习了0 0360360范围的角,范围的角,但在实际问题中还会遇到其他角如在体但在实际问题中还会遇到其他角如在体操、花样滑冰、跳台跳水等比赛中,常常操、花样滑冰、跳台跳水等比赛中,常常听到听到“转体转体1080

4、10800 0”、“转体转体126012600 0”这样这样的解说再如钟表的指针、拧动螺丝的扳的解说再如钟表的指针、拧动螺丝的扳手、机器上的轮盘等,它们按照不同方向手、机器上的轮盘等,它们按照不同方向旋转所成的角,不全是旋转所成的角,不全是0 03603600 0范围内的范围内的角角.因此,仅有因此,仅有0 0360360范围内的角是不范围内的角是不够的,我们必须将角的概念进行推广够的,我们必须将角的概念进行推广.知识探究(一):角的概念的推广知识探究(一):角的概念的推广 思考思考1 1:对于角的图形特点有如下两种认对于角的图形特点有如下两种认识:角是由平面内一点引出的两条射识:角是由平面内

5、一点引出的两条射线所组成的图形(如图线所组成的图形(如图1 1);角是由平);角是由平面内一条射线绕其端点从一个位置旋转面内一条射线绕其端点从一个位置旋转到另一个位置所组成的图形(如图到另一个位置所组成的图形(如图2 2).你认为哪种认识更科学、合理?你认为哪种认识更科学、合理?图图2 2图图1 1思考思考2 2:如图,一条射线的端点是如图,一条射线的端点是O O,它,它从起始位置从起始位置OAOA旋转到终止位置旋转到终止位置OBOB,形成,形成了一个角了一个角,其中点,其中点O O,射线,射线OAOA、OBOB分别分别叫什么名称?叫什么名称?A AOB B始边始边终终边边顶点顶点思考思考3

6、3:在齿轮传动中,被动轮与主动轮在齿轮传动中,被动轮与主动轮是按相反方向旋转的是按相反方向旋转的.一般地,一条射线一般地,一条射线绕其端点旋转,既可以按逆时针方向旋绕其端点旋转,既可以按逆时针方向旋转,也可以按顺时针方向旋转转,也可以按顺时针方向旋转.你认为将你认为将一条射线绕其端点按逆时针方向旋转一条射线绕其端点按逆时针方向旋转60600 0所形成的角,与按顺时针方向旋转所形成的角,与按顺时针方向旋转60600 0所所形成的角是否相等?形成的角是否相等?思考思考4 4:为了区分形成角的两种不同的旋为了区分形成角的两种不同的旋转方向,可以作怎样的规定?如果一条转方向,可以作怎样的规定?如果一条

7、射线没有作任何旋转,它还形成一个角射线没有作任何旋转,它还形成一个角吗?吗?我们规定我们规定:按按逆时针逆时针方向旋转形成的角叫做方向旋转形成的角叫做正角正角,按按顺时针顺时针方向旋转形成的角叫做方向旋转形成的角叫做负角负角如果一条射线没有作任何旋转,则称它如果一条射线没有作任何旋转,则称它形成了一个形成了一个零角零角。即零角的始边和终边重合。即零角的始边和终边重合。画图表示一个大小一定的角,画图表示一个大小一定的角,先画一条射线作为角的始边,先画一条射线作为角的始边,再由角的正负确定角的旋转再由角的正负确定角的旋转方向,再由角的绝对值大小方向,再由角的绝对值大小确定角的旋转量,画出角的确定角

8、的旋转量,画出角的终边,并用带箭头的螺旋线终边,并用带箭头的螺旋线加以标注加以标注.B B2 2A AB B1 1O O思考思考5 5:度量一个角的大小度量一个角的大小,既要考虑旋转方向既要考虑旋转方向,又要考虑旋转量又要考虑旋转量,通过上述规定通过上述规定,角的范围角的范围 就扩展到了任意大小就扩展到了任意大小.对于对于210210,150150,660660,你能用图形表,你能用图形表 示这些角吗?你能总结一下作图的要点吗?示这些角吗?你能总结一下作图的要点吗?思考思考6 6:如果你的手表慢了如果你的手表慢了2020分钟,或快了分钟,或快了1.251.25小时,你应该将分钟分别旋转多少度才

9、小时,你应该将分钟分别旋转多少度才能将时间校准?能将时间校准?思考思考7 7:任意两个角的数量大小可以相加、相任意两个角的数量大小可以相加、相减减,如如50508080=130=130,50,508080=3030,你能解释一下这两个式子的几何意义吗?你能解释一下这两个式子的几何意义吗?以以5050角的终边为始边,逆时针角的终边为始边,逆时针(或顺时针)旋转(或顺时针)旋转8080所成的角所成的角.450.120,思考思考8 8:一个角的始边与终边可以重合吗?一个角的始边与终边可以重合吗?如果可以,这样的角的大小有什么特点?如果可以,这样的角的大小有什么特点?k k360360(kZkZ)知识

10、探究(二):知识探究(二):象限角象限角 思考思考1 1:为了进一步研究角的需要,我们为了进一步研究角的需要,我们常在直角坐标系内讨论角,并使角的顶常在直角坐标系内讨论角,并使角的顶点与原点重合点与原点重合,角的始边与角的始边与x x轴的非负半轴的非负半轴重合,那么对一个任意的角,角的终轴重合,那么对一个任意的角,角的终边可能落在哪些位置?边可能落在哪些位置?xoy思考思考2 2:如果角的终边在第几象限,我们如果角的终边在第几象限,我们就说这个角是就说这个角是第几象限的角第几象限的角;如果角的;如果角的终边在坐标轴上,就认为这个角不属于终边在坐标轴上,就认为这个角不属于任何象限,或称这个角为任

11、何象限,或称这个角为轴线角轴线角.那么下那么下列各角:列各角:-50-50,405,405,210,210,-200,-200,450450分别是第几象限的角?分别是第几象限的角?50 xyoxyo210450 xyo405xyo200 xyo思考思考3 3:锐角与第一象限的角是什么逻辑锐角与第一象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?直角与轴线角是什么逻辑关系?关系?直角与轴线角是什么逻辑关系?思考思考4 4:第二象限的角一定比第一象限的第二象限的角一定比第一象限的角大吗?角大吗?象限角只能反映角的终边所在象限,象限角只能反映角的终边所在象

12、限,不能反映角的大小不能反映角的大小.思考思考5 5:在直角坐标系中,在直角坐标系中,135135角的终角的终边在什么位置?终边在该位置的角一定边在什么位置?终边在该位置的角一定是是135135吗?吗?xyo知识探究(三):知识探究(三):终边相同的角终边相同的角 思考思考1 1:3232,328328,392392是第几是第几象限的角?这些角有什么内在联系?象限的角?这些角有什么内在联系?32392xyo o328思考思考2 2:与与3232角终边相同的角有多少个角终边相同的角有多少个?这些角与这些角与3232角在数量上相差多少角在数量上相差多少?思考思考3 3:所有与所有与3232角终边相

13、同的角,连同角终边相同的角,连同3232角在内,可构成一个集合角在内,可构成一个集合S S,你能用描述法表示集合你能用描述法表示集合S S吗?吗?S=|=S=|=k k360360,kZkZ,即任一与,即任一与终边相同的角,都可以表示成角终边相同的角,都可以表示成角与整数与整数个周角的和个周角的和.思考思考4 4:一般地,所有与角一般地,所有与角终边相同的角,终边相同的角,连同角连同角在内所构成的集合在内所构成的集合S S可以怎样表示?可以怎样表示?S=|=32 k360,kZ思考思考5 5:终边在终边在x x轴正半轴、负半轴,轴正半轴、负半轴,y y轴轴正半轴、负半轴上的角分别如何表示?正半

14、轴、负半轴上的角分别如何表示?x轴正半轴:=k360,kZ;x轴负半轴:=180k360,kZ;y轴正半轴:=90 k360,kZ;y轴负半轴:=270k360,kZ.思考思考6 6:终边在终边在x x轴、轴、y y轴上的角的集合分轴上的角的集合分别如何表示?别如何表示?终边在x轴上:S=|=k180,kZ;终边在y轴上:S=|=90k180,kZ.思考思考7 7:第一、二、三、四象限的角的集第一、二、三、四象限的角的集合分别如何表示?合分别如何表示?第一象限:第一象限:S=|kS=|k3603609090k k360360,kZ;,kZ;第二象限第二象限:S=|90S=|90k k36036

15、0180180k k360360,kZ;,kZ;第三象限第三象限:S=|180S=|180k k360360270270k k360360,kZ;,kZ;第四象限第四象限:S=|S=|9090k k360360kk360360,kZ.,kZ.思考思考8 8:如果如果是第二象限的角,那么是第二象限的角,那么22、/2/2分别是第几象限的角?分别是第几象限的角?9090k k360360180180k k360360180180k k72072023602360k k7207204545k k180180/290/290k k180180理论迁移理论迁移 例例1 1 在在0 0360360范围内,

16、找出范围内,找出与与9509501212角终边相同的角,并判角终边相同的角,并判定它是第几象限角定它是第几象限角.95095012=12=1291294848360360X 3X 3 第二象限角第二象限角.S=|=45S=|=45k k180180,kZ.kZ.315315,-135-135,4545,225225,405405,585585.例例2 2 写出终边在直线写出终边在直线y=xy=x上的角的集上的角的集合合S S,并把,并把S S中适合不等式中适合不等式-360-360 720720的元素写出来的元素写出来.小结小结1.1.角的概念推广后,角的大小可以任意取值角的概念推广后,角的大

17、小可以任意取值.把角放在直角坐标系中进行研究,对于一个把角放在直角坐标系中进行研究,对于一个给定的角,都有唯一的一条终边与之对应,给定的角,都有唯一的一条终边与之对应,并使得角具有代数和几何双重意义并使得角具有代数和几何双重意义.2.2.终边相同的角有无数个,在终边相同的角有无数个,在0 0360360范范围内与已知角围内与已知角终边相同的角有且只有一个终边相同的角有且只有一个.作业:作业:P5 P5 3 3,4 4,5.5.85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。约翰B塔布 86.微笑,昂首阔步,作

18、深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。戴尔卡内基 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。贾柯瑞斯 88.每个意念都是一场祈祷。詹姆士雷德非 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。柏格森 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。托尔斯泰 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼

19、受创的小鸟,无法飞翔。兰斯顿休斯 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。玛科斯奥雷利阿斯 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。约翰纳森爱德瓦兹 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。约翰拉斯金 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。威廉班 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给

20、你快乐。萧伯纳 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。JE丁格 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。英国哲学家培根 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。马塞尔普劳斯特 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。罗丹 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。托尔斯泰 102.人生过程的景观一直在变化,

21、向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候。叔本华 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。梭罗 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。威廉彭 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。戴尔卡内基 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。约翰罗伯克 107.没有人

22、会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。撒母耳厄尔曼 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。卡雷贝C科尔顿 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。戴尔卡内基 110.每天安静地坐十五分钟倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。艾瑞克佛洛姆 111.你知道何谓沮丧-就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。坎伯 112.伟大这个名词未必非出现在规模

23、很大的事情不可;生活中微小之处,照样可以伟大。布鲁克斯 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。罗根皮沙尔史密斯 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。阿萨赫尔帕斯爵士 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。威廉海兹利特 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。凯里昂 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。BC福比斯 118.明知不可而为之的干劲可能会加速

24、走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。迈可汉默 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。奥古斯汀 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。史迈尔斯 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。CHK寇蒂斯 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋

25、。乔治桑 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。约翰夏尔 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。道格拉斯米尔多 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度。老子 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。怀特曼 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。G.K.Chesteron 128.医生知道的事如此的少,他们的收费却是如此的高。马克吐温 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。约翰鲁斯金

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(任意角PPT优秀课件11.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|