线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt

上传人(卖家):宜品文库 文档编号:3499064 上传时间:2022-09-07 格式:PPT 页数:13 大小:1.37MB
下载 相关 举报
线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt_第1页
第1页 / 共13页
线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt_第2页
第2页 / 共13页
线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt_第3页
第3页 / 共13页
线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt_第4页
第4页 / 共13页
线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、用正交变换化二次型为标准形,其特点是用正交变换化二次型为标准形,其特点是保保持几何形状不变持几何形状不变问题问题有没有其它方法,也可以把二次型化有没有其它方法,也可以把二次型化为标准形?为标准形?问题的回答是肯定的。下面介绍一种行之有问题的回答是肯定的。下面介绍一种行之有效的方法效的方法拉格朗日配方法拉格朗日配方法1.若二次型含有若二次型含有 的平方项,则先把含有的平方项,则先把含有 的乘积项集中,然后配方,再对其余的变量同的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形性变换,就得到标准形;ixi

2、x kkjijjiiyxyyxyyx jiknk,2,1 且且拉格朗日配方法的步骤拉格朗日配方法的步骤2.若二次型中不含有平方项,但是若二次型中不含有平方项,但是 则先作可逆线性变换则先作可逆线性变换0 ija),(ji 化二次型为含有平方项的二次型,然后再按化二次型为含有平方项的二次型,然后再按1中方中方法配方法配方.解解32312123222162252xxxxxxxxxf .,62252 323121232221并并求求所所用用的的变变换换矩矩阵阵为为标标准准形形化化二二次次型型xxxxxxxxxf 例例1 131212122xxxxx 322322652xxxx 的项配方的项配方含有含

3、有x1含有平方项含有平方项 2321xxx 322322652xxxx 3223222xxxx 去掉配方后多出来的项去掉配方后多出来的项 322322232144xxxxxxx .22322321xxxxx 3332232112xyxxyxxxy令令 3332232112yxyyxyyyx 321321100210111yyyxxx32312123222162252xxxxxxxxxf .2221yy 所用变换矩阵为所用变换矩阵为 .01,100210111 CC,33212211 yxyyxyyx 令令解解,622323121xxxxxxf 代代入入.842232312221yyyyyyf

4、得得.,622 323121并并求求所所用用的的变变换换矩矩阵阵成成标标准准形形化化二二次次型型xxxxxxf 例例2 2由于所给二次型中无平方项,所以由于所给二次型中无平方项,所以 yyyxxx321321100011011即即再配方,得再配方,得 .622223232231yyyyyf 333223112yzyyzyyz 令令,233322311 zyzzyzzy .622232221zzzf 得得 zzzyyy321321100210101即即所用变换矩阵为所用变换矩阵为 100210101100011011C.100111311 .02 C将一个二次型化为标准形,可以用将一个二次型化为

5、标准形,可以用正交变换正交变换法法,也可以用,也可以用拉格朗日配方法拉格朗日配方法,或者其它方法,或者其它方法,这取决于问题的要求如果要求找出一个正交矩这取决于问题的要求如果要求找出一个正交矩阵,无疑应使用正交变换法;如果只需要找出一阵,无疑应使用正交变换法;如果只需要找出一个可逆的线性变换,那么各种方法都可以使用个可逆的线性变换,那么各种方法都可以使用正交变换法的好处是有固定的步骤,可以按部就正交变换法的好处是有固定的步骤,可以按部就班一步一步地求解,但计算量通常较大;如果二班一步一步地求解,但计算量通常较大;如果二次型中变量个数较少,使用拉格朗日配方法反而次型中变量个数较少,使用拉格朗日配

6、方法反而比较简单需要注意的是,比较简单需要注意的是,使用不同的方法使用不同的方法,所所得到的标准形可能不相同得到的标准形可能不相同,但标准形中含有的项但标准形中含有的项数必定相同数必定相同,项数等于所给二次型的秩项数等于所给二次型的秩 .,323121321变变换换并并写写出出所所作作的的可可逆逆线线性性为为标标准准形形化化二二次次型型xxxxxxxxxf 故令故令方项方项由于所给二次型不含平由于所给二次型不含平,解解 ,33212211 yxyyxyyx,)(2322312yyyyf 有有 ,3322311 3322211zyzyzzyyzyzyyz或或再令再令,232221zzzf 得标准形得标准形 .,3332123211zxzzzxzzzx所用可逆线性变换为所用可逆线性变换为

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(线性代数第五章第六节《用配方法化二次型成标准形》课件.ppt)为本站会员(宜品文库)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|