1、第四节一、立体体积一、立体体积 二、曲面的面积二、曲面的面积 三、物体的质心三、物体的质心 四、物体的转动惯量四、物体的转动惯量 五、物体的引力五、物体的引力 重积分的应用 1.能用重积分解决的实际问题的特点所求量是 对区域具有可加性 从定积分定义出发 建立积分式 用微元分析法(元素法)分布在有界闭域上的整体量 3.解题要点 画出积分域、选择坐标系、确定积分序、定出积分限、计算要简便 2.用重积分解决问题的方法 一、立体体积一、立体体积 曲顶柱体曲顶柱体的顶为连续曲面),(yxfz 则其体积为DyxyxfVdd),(,),(Dyx 占有空间有界域空间有界域 的立体的体积为zyxVdddxoyz
2、a2例例1.求半径为a 的球面与半顶角为 的内接锥面所围成的立体的体积.解解:在球坐标系下空间立体所占区域为:则立体体积为zyxVdddcos202darrdsincos316033a)cos1(3443acos20ar 0200dsin20drrvdddsind2rMMAdzdn二、曲面的面积二、曲面的面积xyzSo设光滑曲面DyxyxfzS),(,),(:则面积 A 可看成曲面上各点),(zyxM处小切平面的面积 d A 无限积累而成.设它在 D 上的投影为 d,Adcosd),(),(11cos22yxfyxfyxd),(),(1d22yxfyxfAyx(称为面积元素)则Mnd故有曲面面
3、积公式d),(),(122DyxyxfyxfAyxyzxzADdd)()(122若光滑曲面方程为zyzxyxAdd)()(122,),(,),(zyDzyzygx则有zyD即xzxyzyAdd)()(122若光滑曲面方程为,),(,),(xzDxzxzhy若光滑曲面方程为隐式,0),(zyxF则则有yxzyzxDyxFFyzFFxz),(,AyxDxzDzzyxFFFF222,0zF且yxdd例例2.计算双曲抛物面yxz 被柱面222Ryx所截解解:曲面在 xoy 面上投影为,:222RyxD则yxzzADyxdd122yxyxDdd122rrrRd1d0220)1)1(32232R出的面积
4、A.例例3.计算半径为 a 的球的表面积.解解:设球面方程为 ar球面面积元素为ddsind2aA 0202dsindaA24asinada方法方法2 利用直角坐标方程.(见书 P167)方法方法1 利用球坐标方程.axyzoddsina三、物体的质心三、物体的质心设空间有n个质点,),(kkkzyx其质量分别,),2,1(nkmk由力学知,该质点系的质心坐标,11nkknkkkmmxx,11nkknkkkmmyynkknkkkmmzz11设物体占有空间域 ,),(zyx有连续密度函数则 公式,分别位于为为即:采用“大化小,常代变,近似和,取极限”可导出其质心 将 分成 n 小块,),(kkk
5、将第 k 块看作质量集中于点),(kkk例如,nkkkkknkkkkkkvvx11),(),(令各小区域的最大直径,0zyxzyxzyxzyxxxddd),(ddd),(系的质心坐标就近似该物体的质心坐标.的质点,即得此质点在第 k 块上任取一点同理可得zyxzyxzyxzyxyyddd),(ddd),(zyxzyxzyxzyxzzddd),(ddd),(,),(常数时当zyx则得形心坐标:,dddVzyxxx,dddVzyxyyVzyxzzddd的体积为zyxVddd若物体为占有xoy 面上区域 D 的平面薄片,),(yx为yxyxyxyxxxDDdd),(dd),(yxyxyxyxyyDD
6、dd),(dd),(,常数时,ddAyxxxDAyxyyDdd(A 为 D 的面积)得D 的形心坐标:则它的质心坐标为MMyMMx其面密度 xMyM 对 x 轴的 静矩 对 y 轴的 静矩4例例5.求位于两圆sin2rsin4r和的质心.2D解解:利用对称性可知0 x而DyxyAydd1Drrddsin312rr dsin4sin22dsin956042956dsin295620437之间均匀薄片0dsin3143212oyxC四、物体的转动惯量四、物体的转动惯量设物体占有空间区域 ,有连续分布的密度函数.),(zyx该物体位于(x,y,z)处的微元 vzyxyxd),()(22因此物体 对
7、z 轴 的转动惯量:zyxzyxyxIzddd),()(22zIdxyoz对 z 轴的转动惯量为 因质点系的转动惯量等于各质点的转动惯量之和,故 连续体的转动惯量可用积分计算.类似可得:zyxzyxIxddd),(zyxzyxIyddd),(zyxzyxIoddd),()(22zy)(22zx)(222zyx对 x 轴的转动惯量对 y 轴的转动惯量对原点的转动惯量如果物体是平面薄片,面密度为Dyxyx),(),(DxyxyxIdd),(DoyxyxIdd),(则转动惯量的表达式是二重积分.xDyo2y2x)(22yx DyyxyxIdd),(rraddsin0302例例6.求半径为 a 的均匀
8、半圆薄片对其直径解解:建立坐标系如图,0:222yayxDyxyIDxdd2Drrddsin23441a241aM半圆薄片的质量221aM 2212oxyDaa的转动惯量.)sinsincossin(222222rr解解:取球心为原点,z 轴为 l 轴,:2222azyx则zIzyxyxddd)(22552aMa252dddsin2rr olzxy132220d球体的质量334aM dsin03rrad04例例7.7.求均匀球体对于过球心的一条轴 l 的转动惯量.设球 所占域为(用球坐标)222zyxr G 为引力常数五、物体的引力五、物体的引力设物体占有空间区域,,连续),(zyx物体对位于
9、原点的单位质量质点的引力利用元素法,vrxzyxGFxd),(d3vryzyxGFyd),(d3vrzzyxGFzd),(d3在上积分即得各引力分量:其密度函数rzxvdyFd引力元素在三坐标轴上的投影分别为),(zyxFFFF vrxzyxGFxd),(3vryzyxGFyd),(3vrzzyxGFzd),(3对 xoy 面上的平面薄片D,它对原点处的单位质量质点的引力分量为,d),(3DxxyxGFDyyyxGFd),(3)(22yx aaR1122xyzoR例例8.设面密度为,半径为R的圆形薄片求它对位于点解解:由对称性知引力zFddaG,222Ryx)0(),0,0(0aaMDzaGF
10、aGaG2处的单位质量质点的引力.2ddGdaR020da0M。,0z),0,0(zFF 23222)(dayx23222)(dayx2322)(darrrRxyzo例例9.求半径 R 的均匀球2222Rzyx对位于)(),0,0(0RaaM的单位质量质点的引力.解解:利用对称性知引力分量0yxFFzFRRzazGd)(vazyxazGd)(23222RRzazGd)(200232222)(ddzRazrrr点zDazyxyx23222)(dd0MazDRRzazd )(zFG222211azaRza200232222)(ddzRazrrrRRzazGd)(G2RRaza)(1222daazR
11、2aMGR2343RM 为球的质量)(th(t 为时间)的雪堆在融化过程中,其侧面满足方程,)()(2)(22thyxthz设长度单位为厘米,时间单位为小时,设有一高度为已知体积减少的速率与侧面积成正比(比例系数 0.9),问高度为130 cm 的雪堆全部融化需要 多少小时?ex提示提示:yxzo记雪堆体积为 V,侧面积为 S,则)(:221220thyxD)()(:22122zththyxDzVzDyxdd)(0dthz)(0221d)()(thzzththS0Dyxzzyxdd)()(1220D)()(162221thyx)(2thrrrthd16)(2202)(th)(12132th)(43thyxdd(用极坐标)(12132thS,)(43thV由题意知StV9.0dd1013ddth130)0(h1301013)(tth令,0)(th得100t(小时)因此高度为130cm的雪堆全部融化所需的时间为100小时.