1、自行车里的数学教学目标:1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力3、经历解决问题的基本过程,了解数学与生活的密切关系。教学重难点:运用所学知识解决实际问题。 教学过程:一、揭示课题1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。2、自行车里会有数学问题吗?想一想。二、研究普通自行车的速度与内在结构的关系1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。2、分析问题(1)学生讨论如何解决问题。方案
2、一:直接测量,但是误差较大。方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。(2)讨论:前齿轮转一圈,后齿轮转几圈?前齿轮转的圈数 前齿轮的齿数=后齿轮转的圈数 后齿轮的齿数建立数学模型,收集数据并求解。(1)蹬一圈车子走的距离=车轮的周长(前齿轮的齿数:后齿轮的齿数)(2)分组收集所需要的数据,带入上述模式,求出答案。4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。三、研究变速自行车能组合出多少种速度?1、提出问题:变速自行车能组合出多少种速度?(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)(2)根据这个结构,可以组合出多少种速度?2、分析问题
3、,求解,汇报。3、蹬同样的圈数,哪种组合使自行车走得最远?四、课堂作业1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)五、课堂小结自行车里的学问可真大,你还能提出一些数学问题并解决吗?自行车里的数学1、踏板蹬一圈,是不是车轮也走一圈?2、踏板蹬一圈,所走的路程与什么有关?最佳答案踏板蹬一圈,是不是车轮也走一圈?不是,因为踏板所带动的大轮与自行车后轮上的飞轮大小是不同的,所以当踏板转一圈时,后轮要轮上5-6圈.踏板蹬一圈,所走的路程与什么有关?与自行车的轮胎直径有关,就是我们说的20、24、26、28寸.