数据结构数据结构6课件.ppt

上传人(卖家):三亚风情 文档编号:3539388 上传时间:2022-09-14 格式:PPT 页数:125 大小:1.86MB
下载 相关 举报
数据结构数据结构6课件.ppt_第1页
第1页 / 共125页
数据结构数据结构6课件.ppt_第2页
第2页 / 共125页
数据结构数据结构6课件.ppt_第3页
第3页 / 共125页
数据结构数据结构6课件.ppt_第4页
第4页 / 共125页
数据结构数据结构6课件.ppt_第5页
第5页 / 共125页
点击查看更多>>
资源描述

1、第六章第六章树和二叉树树和二叉树6.1 树的类型定义树的类型定义6.2 6.2 二叉树的类型定义二叉树的类型定义6.3 二叉树的存储结构二叉树的存储结构6.4 二叉树的遍历二叉树的遍历6.5 线索二叉树线索二叉树6.6 树和森林的表示方法树和森林的表示方法6.7 树和森林的遍历树和森林的遍历6.8 哈夫曼树与哈夫曼编码哈夫曼树与哈夫曼编码6.1 树的类型定义树的类型定义数据对象数据对象 D:D是具有相同特性的数据元素的集合。是具有相同特性的数据元素的集合。若若D为空集,则称为空树为空集,则称为空树。否则否则:(1)在在D中存在唯一的称为根的数据元素中存在唯一的称为根的数据元素root;(2)当

2、当n1时,其余结点可分为时,其余结点可分为m(m0)个互个互 不相交的有限集不相交的有限集T1,T2,Tm,其中每一,其中每一 棵子集本身又是一棵符合本定义的树,棵子集本身又是一棵符合本定义的树,称为根称为根root的子树。的子树。数据关系数据关系 R:基本操作:基本操作:查查 找找 类类 插插 入入 类类删删 除除 类类 Root(T)/求树的根结点求树的根结点 查找类:查找类:Value(T,cur_e)/求当前结点的元素值求当前结点的元素值 Parent(T,cur_e)/求当前结点的双亲结点求当前结点的双亲结点LeftChild(T,cur_e)/求当前结点的最左孩子求当前结点的最左孩

3、子 RightSibling(T,cur_e)/求当前结点的右兄弟求当前结点的右兄弟TreeEmpty(T)/判定树是否为空树判定树是否为空树 TreeDepth(T)/求树的深度求树的深度TraverseTree(T,Visit()/遍历遍历InitTree(&T)/初始化置空树初始化置空树 插入类:插入类:CreateTree(&T,definition)/按定义构造树按定义构造树Assign(T,cur_e,value)/给当前结点赋值给当前结点赋值InsertChild(&T,&p,i,c)/将以将以c为根的树插入为结点为根的树插入为结点p的第的第i棵子树棵子树 ClearTree(&

4、T)/将树清空将树清空 删除类:删除类:DestroyTree(&T)/销毁树的结构销毁树的结构DeleteChild(&T,&p,i)/删除结点删除结点p的第的第i棵子树棵子树ABCDEFGHIJMKLA(B(E,F(K,L),C(G),D(H,I,J(M)T1T3T2树根例如例如:()有确定的根;()树根和子树根之间为有向关系。有向树:有向树:有序树:有序树:子树之间存在确定的次序关系。无序树:无序树:子树之间不存在确定的次序关系。对比对比树型结构树型结构和和线性结构线性结构的结构特点的结构特点线性结构线性结构树型结构树型结构第一个数据元素第一个数据元素 (无前驱无前驱)根结点根结点 (无

5、前驱无前驱)最后一个数据元素最后一个数据元素 (无后继无后继)多个叶子结点多个叶子结点 (无后继无后继)其它数据元素其它数据元素(一个前驱、一个前驱、一个后继一个后继)其它数据元素其它数据元素(一个前驱、一个前驱、多个后继多个后继)基基 本本 术术 语语结点结点:结点的度结点的度:树的度树的度:叶子结点叶子结点:分支结点分支结点:数据元素+若干指向子树的分支分支的个数树中所有结点的度的最大值度为零的结点度大于零的结点DHIJM赵老根赵老根赵跃进赵跃进赵小康赵小康赵改革赵改革赵开放赵开放赵解放赵解放赵抗美赵抗美赵卫兵赵卫兵赵永红赵永红(从根到结点的)路径路径:孩子孩子结点、双亲双亲结点兄弟兄弟结

6、点、堂兄弟祖先祖先结点、子孙子孙结点结点的层次结点的层次:树的深度:树的深度:由从根根到该结点所经分支和结点构成ABCDEFGHIJMKL假设根结点的层次为1,第l 层的结点的子树根结点的层次为l+1树中叶子结点所在的最大层次任何一棵非空树是一个二元组 Tree=(root,F)其中:root 被称为根结点 F 被称为子树森林森林:森林:是m(m0)棵互不相交的树的集合ArootBCDEFGHIJMKLF6.2 二叉树的类型定义二叉树的类型定义 二叉树或为空树空树,或是由一个根结根结点点加上两棵两棵分别称为左子树左子树和右子树的、互不交的互不交的二叉树二叉树组成。ABCDEFGHK根结点左子树

7、右子树二叉树的五种基本形态:二叉树的五种基本形态:N空树空树只含根结点只含根结点NNNLRR右子树为空树右子树为空树L左子树为空树左子树为空树左右子左右子树均不树均不为空树为空树 二叉树的主要基本操作二叉树的主要基本操作:查查 找找 类类插插 入入 类类删删 除除 类类 Root(T);Value(T,e);Parent(T,e);LeftChild(T,e);RightChild(T,e);LeftSibling(T,e);RightSibling(T,e);BiTreeEmpty(T);BiTreeDepth(T);PreOrderTraverse(T,Visit();InOrderTra

8、verse(T,Visit();PostOrderTraverse(T,Visit();LevelOrderTraverse(T,Visit();InitBiTree(&T);Assign(T,&e,value);CreateBiTree(&T,definition);InsertChild(T,p,LR,c);ClearBiTree(&T);DestroyBiTree(&T);DeleteChild(T,p,LR);二叉树二叉树的重要特性的重要特性 性质性质 1:在二叉树的第 i 层上至多有2i-1 个结点。(i1)用归纳法证明用归纳法证明:归纳基归纳基:归纳假设:归纳假设:归纳证明:归纳证

9、明:i=1 层时,只有一个根结点:2i-1=20=1;假设对所有的 j,1 j i,命题成立;二叉树上每个结点至多有两棵子树,则第 i 层的结点数=2i-2 2=2i-1。性质性质 2:深度为 k 的二叉树上至多含 2k-1 个结点(k1)。证明:证明:基于上一条性质,深度为 k 的二叉树上的结点数至多为 20+21+2k-1=2k-1。性质性质 3:对任何一棵二叉树,若它含有n0 个叶子结点、n2 个度为 2 的结点,则必存在关系式:n0=n2+1。证明:证明:设设 二叉树上结点总数 n=n0+n1+n2又又 二叉树上分支总数 b=n1+2n2 而 b=n-1=n0+n1+n2-1由此,由此

10、,n0=n2+1。两类两类特殊特殊的二叉树:的二叉树:满二叉树满二叉树:指的是深度为k且含有2k-1个结点的二叉树。完全二叉树完全二叉树:树中所含的 n 个结点和满二叉树中编号编号为为 1 至至 n 的结点的结点一一对应。123456789 10 11 12 13 14 15abcdefghij 性质性质 4:具有 n 个结点的完全二叉树的深度深度为 log2n +1。证明:证明:设设完全二叉树的深度为 k 则根据第二条性质得 2k-1 n 2k 即 k-1 log2 n n,则该结点无左孩子,否则,编号为 2i 的结点为其左孩子左孩子结点;(3)若 2i+1n,则该结点无右孩子结点,否则,编

11、号为2i+1 的结点为其右孩子右孩子结点。6.3 二叉树的存储结构二叉树的存储结构二、二叉树的链式二、二叉树的链式 存储表示存储表示一、一、二叉树的顺序二叉树的顺序 存储表示存储表示#define MAX_TREE_SIZE 100 /二叉树的最大结点数typedef TElemType SqBiTreeMAX_ TREE_SIZE;/0号单元存储根结点SqBiTree bt;一、一、二叉树的顺序存储表示二叉树的顺序存储表示例如例如:ABCDEF A B D C E F 0 1 2 3 4 5 6 7 8 9 10 11 12 131401326二、二叉树的链式存储表示二、二叉树的链式存储表示

12、1.1.二叉链表二叉链表2三叉链表三叉链表3 3双亲链表双亲链表4线索链表线索链表ADEBCF rootlchild data rchild结点结构结点结构:1.1.二叉链表二叉链表typedef struct BiTNode /结点结构结点结构 TElemType data;struct BiTNode *lchild,*rchild;/左右孩子指针 BiTNode,*BiTree;lchild data rchild结点结构结点结构:C 语言的类型描述如下语言的类型描述如下:ADEBCF root 2三叉链表三叉链表parent lchild data rchild结点结构结点结构:typ

13、edef struct TriTNode /结点结构结点结构 TElemType data;struct TriTNode *lchild,*rchild;/左右孩子指针 struct TriTNode *parent;/双亲指针 TriTNode,*TriTree;parent lchild data rchild结点结构结点结构:C 语言的类型描述如下语言的类型描述如下:0123456B2C0A-1D2E3F4 data parent结点结构结点结构:3 3双亲链表双亲链表LRTagLRRRLABCDEF1401326 typedef struct BPTNode /结点结构结点结构 TE

14、lemType data;int *parent;/指向双亲的指针 char LRTag;/左、右孩子标志域 BPTNode typedef struct BPTree/树结构树结构 BPTNode nodesMAX_TREE_SIZE;int num_node;/结点数目 int root;/根结点的位置 BPTree6.4二叉树的遍历二叉树的遍历一、问题的提出一、问题的提出二、先左后右的遍历算法二、先左后右的遍历算法三、算法的递归描述三、算法的递归描述四、中序遍历算法的非递归描述四、中序遍历算法的非递归描述五五、遍历算法的应用举例遍历算法的应用举例 顺着某一条搜索路径巡访巡访二叉树中的结点

15、,使得每个结点均被访问一均被访问一次次,而且仅被访问一次仅被访问一次。一、问题的提出一、问题的提出“访问访问”的含义可以很广,如:输出结点的信息等。“遍历遍历”是任何类型均有的操作,对线性结构而言,只有一条搜索路径(因为每个结点均只有一个后继),故不需要另加讨论。而二叉树是非线性结构,每个结点有两个后继每个结点有两个后继,则存在如何遍历存在如何遍历即按什么样的搜索搜索路径路径遍历的问题。对对“二叉树二叉树”而言,可以有而言,可以有三条搜索路径:三条搜索路径:1先上后下先上后下的按层次遍历;2先左先左(子树)后右后右(子树)的遍历;3先右先右(子树)后左后左(子树)的遍历。二、先左后右的遍历算法

16、二、先左后右的遍历算法先先(根)序的遍历算法中中(根)序的遍历算法后后(根)序的遍历算法 若二叉树为空树,则空操作;否则,(1)访问根结点;(2)先序遍历左子树;(3)先序遍历右子树。先(根)序的遍历算法:先(根)序的遍历算法:若二叉树为空树,则空操作;否则,(1)中序遍历左子树;(2)访问根结点;(3)中序遍历右子树。中(根)序的遍历算法:中(根)序的遍历算法:若二叉树为空树,则空操作;否则,(1)后序遍历左子树;(2)后序遍历右子树;(3)访问根结点。后(根)序的遍历算法:后(根)序的遍历算法:三、算法的递归描述三、算法的递归描述void Preorder(BiTree T,void(*v

17、isit)(TElemType&e)1 1 /先序遍历二叉树 2 if(T)3 visit(T-data);/访问结点4 Preorder(T-lchild,visit);/遍历左子树5 Preorder(T-rchild,visit);/遍历右子树6 7 7 ADB T 可以这样理解:无论先序、中序、后序可以这样理解:无论先序、中序、后序遍历二叉树,遍历时的搜索路线是相同的:遍历二叉树,遍历时的搜索路线是相同的:从根节点出发,逆时针延二叔叉树外缘移动从根节点出发,逆时针延二叔叉树外缘移动对每个节点均途径三次。对每个节点均途径三次。先序遍历:第一次经过节点时访问。先序遍历:第一次经过节点时访问

18、。中序遍历:第二次经过节点时访问。中序遍历:第二次经过节点时访问。后序遍历:第三次经过节点时访问。后序遍历:第三次经过节点时访问。AB123四、中序遍历算法的非递归描述四、中序遍历算法的非递归描述BiTNode*GoFarLeft(BiTree T,Stack*S)if(!T)return NULL;while(T-lchild)Push(S,T);T=T-lchild;return T;void Inorder_I(BiTree T,void(*visit)(TelemType&e)Stack*S;t=GoFarLeft(T,S);/找到最左下的结点 while(t)visit(t-data

19、);if(t-rchild)t=GoFarLeft(t-rchild,S);else if(!StackEmpty(S)/栈不空时退栈 t=Pop(S);else t=NULL;/栈空表明遍历结束 /while/Inorder_I 五五、遍历算法的应用举例遍历算法的应用举例1、统计二叉树中叶子结点的个数、统计二叉树中叶子结点的个数 (先序遍历先序遍历)2、求二叉树的深度、求二叉树的深度(后序遍历后序遍历)3、复制二叉树、复制二叉树(后序遍历后序遍历)4 4、建立二叉树的存储结构、建立二叉树的存储结构1、统计二叉树中叶子结点的个数、统计二叉树中叶子结点的个数算法基本思想算法基本思想:先序(或中序

20、或后序)遍历二叉树,在遍历过程中查找叶子结点,并计数。由此,需在遍历算法中增添一个需在遍历算法中增添一个“计数计数”的参数,的参数,并将算法中“访问结点”的操作改为:若是叶子,则计数器增若是叶子,则计数器增1 1。void CountLeaf(BiTree T,int&count)if(T)if(!T-lchild)&(!T-rchild)count+;/对叶子结点计数 CountLeaf(T-lchild,count);CountLeaf(T-rchild,count);/if/CountLeaf2、求二叉树的深度、求二叉树的深度(后序遍历后序遍历)算法基本思想算法基本思想:从二叉树深度的定

21、义可知,二叉树的深二叉树的深度应为其左、右子树深度的最大值加度应为其左、右子树深度的最大值加1 1。由此,需先分别求得左、右子树的深度,需先分别求得左、右子树的深度,算法中“访问结点”的操作为:求得左、右求得左、右子树深度的最大值,然后加子树深度的最大值,然后加 1 1。首先分析二叉树的深度二叉树的深度和它的左左、右子右子树深度树深度之间的关系。int Depth(BiTree T)/返回二叉树的深度 if(!T)depthval=0;else depthLeft=Depth(T-lchild);depthRight=Depth(T-rchild);depthval=1+(depthLeft

22、depthRight?depthLeft:depthRight);return depthval;3、复制二叉树、复制二叉树其基本操作为:生成一个结点。其基本操作为:生成一个结点。根元素根元素T左子树左子树右子树右子树根元素根元素NEWT左子树左子树右子树右子树左子树左子树右子树右子树(后序遍历后序遍历)BiTNode*GetTreeNode(TElemType item,BiTNode*lptr,BiTNode*rptr)if(!(T=(BiTNode*)malloc(sizeof(BiTNode)exit(1);T-data=item;T-lchild=lptr;T-rchild=rptr

23、;return T;生成一个二叉树的结点生成一个二叉树的结点(其数据域为其数据域为item,左指针域为左指针域为lptr,右指针域为右指针域为rptr)BiTNode*CopyTree(BiTNode*T)if(!T)return NULL;if(T-lchild)newlptr=CopyTree(T-lchild);/复制左子树 else newlptr=NULL;if(T-rchild)newrptr=CopyTree(T-rchild);/复制右子树 else newrptr=NULL;newT=GetTreeNode(T-data,newlptr,newrptr);return new

24、T;/CopyTreeABCDEFGHK D C B H K G F E A例如:下列二叉树例如:下列二叉树的复制过程如下:的复制过程如下:newT4 4、建立二叉树的存储、建立二叉树的存储结构结构不同的定义方法相应有不同的不同的定义方法相应有不同的存储结构的建立算法存储结构的建立算法 以字符串的形式以字符串的形式 根根 左子树左子树 右子树右子树定义一棵二叉树定义一棵二叉树例如:ABCD以空白字符“”表示A(B(,C(,),D(,)空树空树只含一个根结点只含一个根结点的二叉树的二叉树A以字符串“A ”表示以下列字符串表示Status CreateBiTree(BiTree&T)scanf(&

25、ch);if(ch=)T=NULL;else if(!(T=(BiTNode*)malloc(sizeof(BiTNode)exit(OVERFLOW);T-data=ch;/生成根结点 CreateBiTree(T-lchild);/构造左子树 CreateBiTree(T-rchild);/构造右子树 return OK;/CreateBiTreeA B C D A BCD上页算法执行过程举例如下:ATBCD 按给定的表达式建相应二叉树按给定的表达式建相应二叉树 由先缀表示式建树由先缀表示式建树例如:已知表达式的先缀表示式 -+a b c/d e 由原表达式建树由原表达式建树例如:已知表达

26、式(a+b)c d/e d/e对应先缀表达式 -+a b c/d e的二叉树的二叉树abcde-+/特点特点:操作数为叶子叶子结点 运算符为分支分支结点scanf(&ch);if(In(ch,字母集)建叶子结点;else 建根结点;递归建左子树;递归建右子树;由先缀表示式建树的算法的基本操作:由先缀表示式建树的算法的基本操作:a+b(a+b)c d/e d/ea+bc 分析表达式和二叉树的关系分析表达式和二叉树的关系:ab+abc+abc+(a+b)cabcde-+/基本操作基本操作:scanf(&ch);if(In(ch,字母集)建叶子结点;暂存;else if (In(ch,运算符集)和前

27、一个运算符比较优先数;若当前的优先数“高”,则暂存;否则建子树;仅知二叉树的先序序列“abcdefg”不能唯一确定一棵二叉树,由二叉树的先序和中序序列建树由二叉树的先序和中序序列建树 如果同时已知二叉树的中序序列“cbdaegf”,则会如何?二叉树的先序序列二叉树的中序序列左子树左子树左子树左子树 右子树右子树右子树右子树根根根根a b c d e f gc b d a e g f例如例如:aab bccddeeffggabcdefg先序序列中序序列6.5线索二叉树线索二叉树 何谓线索二叉树?何谓线索二叉树?线索链表的遍历算法线索链表的遍历算法 如何建立线索链表?如何建立线索链表?一、一、何谓

28、线索二叉树?何谓线索二叉树?遍历二叉树的结果是,求得结点的一个线性序列。ABCDEFGHK例如:先序先序序列:A B C D E F G H K中序中序序列:B D C A H G K F E后序后序序列:D C B H K G F E A指向该线性序列中的“前驱”和 “后继”的指针指针,称作“线线索索”与其相应的二叉树,称作“线索二叉树线索二叉树”包含“线索”的存储结构,称作“线索链线索链表表”A B C D E F G H K D C B E 对对线索链表线索链表中结点的约定:中结点的约定:在二叉链表的结点中增加两个标志域增加两个标志域,并作如下规定:若该结点的左子树不空,若该结点的左子树

29、不空,则Lchild域的指针指向其左子树,且左标志域的值为“指针 Link”;否则,Lchild域的指针指向其“前驱”,且左标志的值为“线索 Thread”。若该结点的右子树不空,若该结点的右子树不空,则rchild域的指针指向其右子树,且右标志域的值为“指针 Link”;否则,rchild域的指针指向其“后继”,且右标志的值为“线索 Thread”。如此定义的二叉树的存储结构称作如此定义的二叉树的存储结构称作“线索链表线索链表”。typedef struct BiThrNod TElemType data;struct BiThrNode *lchild,*rchild;/左右指针 Poin

30、terThr LTag,RTag;/左右标志 BiThrNode,*BiThrTree;线索链表的类型描述:typedef enum Link,Thread PointerThr;/Link=0:指针,Thread=1:线索二、线索链表的遍历算法二、线索链表的遍历算法:for(p=firstNode(T);p;p=Succ(p)Visit(p);由于在线索链表中添加了遍历中得到的“前驱”和“后继”的信息,从而简化了遍历的算法。例如例如:对中序线索化链表的遍历算法对中序线索化链表的遍历算法 中序遍历的第一个结点中序遍历的第一个结点?在中序线索化链表中结点的后继在中序线索化链表中结点的后继?左子树

31、上处于“最左下最左下”(没有左子树)的结点。若若无右子树,则为则为后继线索后继线索所指结点;否则为否则为对其右子树右子树进行中序遍历遍历时访问的第一个结点。第一个结点。void InOrderTraverse_Thr(BiThrTree T,void(*Visit)(TElemType e)p=T-lchild;/p指向根结点 while(p!=T)/空树或遍历结束时,p=T while(p-LTag=Link)p=p-lchild;/第一个结点 while(p-RTag=Thread&p-rchild!=T)p=p-rchild;Visit(p-data);/访问后继结点 p=p-rchil

32、d;/p进至其右子树根 /InOrderTraverse_Thr 在中序遍历过程中修改结点的在中序遍历过程中修改结点的左、右指针域,以保存当前访问结左、右指针域,以保存当前访问结点的点的“前驱前驱”和和“后继后继”信息。遍历过信息。遍历过程中,附设指针程中,附设指针pre,并始终保持指并始终保持指针针pre指向当前访问的、指针指向当前访问的、指针p所指所指结点的前驱。结点的前驱。三、如何建立线索链表?三、如何建立线索链表?void InThreading(BiThrTree p)if(p)/对以p为根的非空二叉树进行线索化 InThreading(p-lchild);/左子树线索化 if(!p

33、-lchild)/建前驱线索 p-LTag=Thread;p-lchild=pre;if(!pre-rchild)/建后继线索 pre-RTag=Thread;pre-rchild=p;pre=p;/保持 pre 指向 p 的前驱 InThreading(p-rchild);/右子树线索化 /if/InThreadingStatus InOrderThreading(BiThrTree&Thrt,BiThrTree T)/构建中序线索链表 if(!(Thrt=(BiThrTree)malloc(sizeof(BiThrNode)exit(OVERFLOW);Thrt-LTag=Link;Thr

34、t-RTag=Thread;Thrt-rchild=Thrt;/添加头结点 return OK;/InOrderThreading if(!T)Thrt-lchild=Thrt;else Thrt-lchild=T;pre=Thrt;InThreading(T);pre-rchild=Thrt;/处理最后一个结点 pre-RTag=Thread;Thrt-rchild=pre;6.6 树和森林树和森林 的表示方法的表示方法树的三种存储结构树的三种存储结构一、一、双亲表示法双亲表示法二、二、孩子链表表示法孩子链表表示法三、三、树的二叉链表树的二叉链表(孩子孩子-兄弟)兄弟)存储表示法存储表示法A

35、BCDEFG0 A -11 B 02 C 03 D 04 E 2 5 F 26 G 5r=0n=7data parent一、双亲表示法一、双亲表示法:typedef struct PTNode Elem data;int parent;/双亲位置域 PTNode;data parent#define MAX_TREE_SIZE 100结点结构结点结构:C语言的类型描述语言的类型描述:typedef struct PTNode nodes MAX_TREE_SIZE;int r,n;/根结点的位置和结点个数 PTree;树结构树结构:ABCDEFG0 A -11 B 02 C 03 D 04 E

36、 25 F 26 G 5r=0n=7 data firstchild 1 2 34 56二、孩子链表表示法二、孩子链表表示法:-1000224typedef struct CTNode int child;struct CTNode*next;*ChildPtr;孩子结点结构孩子结点结构:child nextC语言的类型描述语言的类型描述:typedef struct Elem data;ChildPtr firstchild;/孩子链的头指针 CTBox;双亲结点结构双亲结点结构 data firstchildtypedef struct CTBox nodesMAX_TREE_SIZE;i

37、nt n,r;/结点数和根结点的位置 CTree;树结构树结构:ABCDEFG AB C E D F Groot AB C E D F G 三、树的二叉链表三、树的二叉链表(孩子孩子-兄弟)存储表示法兄弟)存储表示法typedef struct CSNode Elem data;struct CSNode *firstchild,*nextsibling;CSNode,*CSTree;C语言的类型描述语言的类型描述:结点结构结点结构:firstchild data nextsibling 森林和二叉树的对应关系森林和二叉树的对应关系设设森林森林 F=(T1,T2,Tn);T1=(root,t1

38、1,t12,t1m);二叉树二叉树 B=(LBT,Node(root),RBT);由森林转换成二叉树由森林转换成二叉树的转换规则为:若 F=,则 B=;否则,由 ROOT(T1)对应得到 Node(root);由(t11,t12,t1m)对应得到 LBT;由(T2,T3,Tn)对应得到 RBT。由二叉树转换为森林由二叉树转换为森林的转换规则为:若 B=,则 F=;否则,由 Node(root)对应得到 ROOT(T1);由LBT 对应得到(t11,t12,,t1m);由RBT 对应得到(T2,T3,Tn)。由此,树的各种操作均可对应二叉树的操作来完成。应当注意的是,应当注意的是,和树对应的二叉

39、树,其左、右子树的概念已改变为:左是孩子,右是兄弟。左是孩子,右是兄弟。6.7树和森林的遍历树和森林的遍历一、树的遍历一、树的遍历二、森林的遍历二、森林的遍历三、树的遍历的应用三、树的遍历的应用树的遍历可有三条搜索路径树的遍历可有三条搜索路径:按层次遍历按层次遍历:先根先根(次序次序)遍历遍历:后根后根(次序次序)遍历遍历:若树不空,则先访问根结点,然后若树不空,则先访问根结点,然后依次先根遍历各棵子树。依次先根遍历各棵子树。若树不空,则先依次后根遍历各棵若树不空,则先依次后根遍历各棵子树,然后访问根结点。子树,然后访问根结点。若树不空,则自上而下自左至右若树不空,则自上而下自左至右访问树中每

40、个结点。访问树中每个结点。A B C DE F G H I J K 先根遍历时顶点先根遍历时顶点的访问次序:的访问次序:A B E F C D G H I J K 后根遍历时顶点后根遍历时顶点的访问次序:的访问次序:E F B C I J K H G D A 层次遍历时顶点层次遍历时顶点的访问次序:的访问次序:A B C D E F G H I J K B C DE F G H I J K1森林中第一棵树的根结点;2森林中第一棵树的子树森林;3森林中其它树构成的森林。森林由三部分构成:1.先序遍历先序遍历森林的遍历森林的遍历 若森林不空,则访问访问森林中第一棵树的根结点;先序遍历先序遍历森林中

41、第一棵树的子树森林;先序遍历先序遍历森林中(除第一棵树之外)其 余树构成的森林。即:依次从左至右依次从左至右对森林中的每一棵树树进行先根遍历先根遍历。中序遍历中序遍历 若森林不空,则中序遍历中序遍历森林中第一棵树的子树森林;访问访问森林中第一棵树的根结点;中序遍历中序遍历森林中(除第一棵树之外)其 余树构成的森林。即:依次从左至右依次从左至右对森林中的每一棵树树进行后根遍历后根遍历。树的遍历和二叉树遍历树的遍历和二叉树遍历的对应关系的对应关系?先根遍历先根遍历后根遍历后根遍历树树二叉树二叉树森林森林先序遍历先序遍历先序遍历先序遍历中序遍历中序遍历中序遍历中序遍历设树的存储结构为孩子兄弟链表设树

42、的存储结构为孩子兄弟链表typedef struct CSNode Elem data;struct CSNode*firstchild,*nextsibling;CSNode,*CSTree;int TreeDepth(CSTree T)1 if(!T)return 0;2 else 3 h1=TreeDepth(T-firstchild);4 h2=TreeDepth(T-nextsibling);56 7 /TreeDepthreturn(max(h1+1,h2);求树的深度的算法:求树的深度的算法:6.8 哈哈 夫夫 曼曼 树树 与与 哈哈 夫夫 曼曼 编编 码码 最优树的定义最优树的

43、定义 如何构造最优树如何构造最优树 前缀编码前缀编码 一、最优树的定义一、最优树的定义树的路径长度树的路径长度定义为:树中每个结点的路径长度之和。结点的路径长度结点的路径长度定义为:从根结点到该结点的路径上 分支的数目。树的带权路径长度树的带权路径长度定义为:树中所有叶子结点的带权路径长度结点的带权路径长度之和 WPL(T)=wklk(对所有叶子结点)。在所有含 n 个叶子结点、并带相同权值的 m 叉树中,必存在一棵其带权路径带权路径长度取最小值长度取最小值的树,称为“最优树最优树”。例如:例如:27 9 75492WPL(T)=72+52+23+43+92 =60WPL(T)=74+94+5

44、3+42+21 =89 54 根据给定的 n 个权值 w1,w2,wn,构造 n 棵二叉树的集合 F=T1,T2,Tn,其中每棵二叉树中均只含一个带权值 为 wi 的根结点,其左、右子树为空树;二、如何构造最优树二、如何构造最优树(1)(赫夫曼算法)以二叉树为例:在 F 中选取其根结点的权值为最 小的两棵二叉树,分别作为左、右子树构造一棵新的二叉树,并 置这棵新的二叉树根结点的权值 为其左、右子树根结点的权值之 和;(2)从F中删去这两棵树,同时加入 刚生成的新树;重复(2)和(3)两步,直至 F 中只 含一棵树为止。(3)(4)9例如:已知权值 W=5,6,2,9,7 56275276976

45、71395276713952795271667132900001111000110110111 指的是,任何一个字符的编码都任何一个字符的编码都不是同一字符集中另一个字符的编码不是同一字符集中另一个字符的编码的前缀的前缀。三、前缀编码三、前缀编码 利用赫夫曼树可以构造一种不等长利用赫夫曼树可以构造一种不等长的二进制编码,并且构造所得的的二进制编码,并且构造所得的赫夫赫夫曼编码曼编码是一种是一种最优前缀编码最优前缀编码,即使所,即使所传传电文的总长度最短电文的总长度最短。1.熟练掌握二叉树的结构特性二叉树的结构特性,了解相应的证明方法。2.熟悉二叉树的各种存储结构存储结构的特点及适用范围。3.遍

46、历二叉树遍历二叉树是二叉树各种操作的基础。实现二叉树遍历的具体算法与所采用的存储结构有关。掌握各种遍历策略的递归算递归算法法,灵活运用遍历算法灵活运用遍历算法实现二叉树的其它操作。层次遍历层次遍历是按另一种搜索策略进行的遍历。4.理解二叉树线索化的实质线索化的实质是建立结点与其在相应序列中的前驱或后继之间的直接联系,熟练掌握二叉树的线索线索化过程化过程以及在中序线索化树上找给定结点的前驱和后继的方法。二叉树的线索线索化过程化过程是基于基于对二叉树进行遍历遍历,而线索二叉树上的线索又为相应的遍历提供线索又为相应的遍历提供了方便方便。5.熟悉树的树的各种存储结构存储结构及其特点,掌握树和森林与二叉树的转换树和森林与二叉树的转换方法。建立存储结构是进行其它操作的前提,因此读者应掌掌握握 1 至 2 种建立建立二叉树和树的存储结构的方存储结构的方法法。6.学会编写实现树的各种操作实现树的各种操作的算法。7.了解最优树的特性最优树的特性,掌握建立最优树建立最优树和哈夫曼编码和哈夫曼编码的方法。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(数据结构数据结构6课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|