1、绝密启封并使用完毕前 试题类型: 2016年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至3页,第卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回.第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 ,则( ) (A) 2,3 (B)(- ,2 3,+)(C) 3,+) (D)(0,2 3,+)(2)若z=1+2i,则 (A)1 (B) -1 (C) i
2、(D)-i(3)已知向量=(,),=(,),则ABC=(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是(A) 各月的平均最低气温都在00C以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个(5)若 ,则 (A) (B) (C) 1 (D) (6)已知,则(A) (B)(C)(D)(7)执行下图的程序框图,如果输入
3、的a=4,b=6,那么输出的n=(A)3(B)4(C)5(D)6(8)在中,BC边上的高等于,则 (A) (B) (C) (D) (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A)(B) (C)90(D)81(10) 在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若ABBC,AB=6,BC=8,AA1=3,则V的最大值是(A)4 (B) (C)6 (D) (11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C
4、的离心率为(A)(B)(C)(D)(12)定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有(A)18个 (B)16个 (C)14个 (D)12个第II卷本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)若满足约束条件 则的最大值为_.(14)函数y=sinx-3cosx的图像可由函数 y=sinx+3cosx的图像至少向右平移_个单位长度得到。(15)已知f(x)为
5、偶函数,当x0时,fx=ln-x+3x,则曲线y=f(x),在带你(1,-3)处的切线方程是_。(16)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别做l的垂线与x轴交于C,D两点,若AB=23,则CD=_.学科.网三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知数列an的前n项和Sn=1+a,Sn=1+an,其中0(I)证明an是等比数列,并求其通项公式(II)若S5=3132 ,求(18)(本小题满分12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟
6、合y与t的关系,请用相关系数加以说明(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量。(19)(本小题满分12分)如图,四棱锥P-ABCD中,PA地面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(I)证明MN平面PAB;(II)求直线AN与平面PMN所成角的正弦值.(20)(本小题满分12分)已知抛物线C: 的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线段AB上,R是PQ的中点,证明ARFQ;(II)若PQF的面积是ABF的面积的两倍,求AB
7、中点的轨迹方程.(21)(本小题满分12分)设函数f(x)=acos2x+(a-1)(cosx+1),其中a0,记f(x)的最大值为A.()求f(x);()求A;()证明f(x)2A.请考生在22、23、24题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修4-1:几何证明选讲如图,O中的中点为P,弦PC,PD分别交AB于E,F两点.(I)若PFB=2PCD,求PCD的大小;(II)若EC的垂直平分线与FD的垂直平分线交于点G,证明OGCD.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xO
8、y中,曲线的参数方程为,以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为 .(I)写出的普通方程和的直角坐标方程;(II)设点P在上,点Q在上,求|PQ|的最小值及此时P的直角坐标.24.(本小题满分10分)选修4-5:不等式选讲已知函数(I)当a=2时,求不等式的解集; (II)设函数当时,f(x)+g(x)3,求a的取值范围. 绝密启封并使用完毕前 试题类型:新课标2016年普通高等学校招生全国统一考试理科数学正式答案第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)D (2)C (3)A (4)D (5)A (
9、6)A (7)B (8)C (9)B (10)B (11)A (12)C第II卷本卷包括必考题和选考题两部分。第(13)题第(21)题为必考题,每个试题考生都必须作答。第(22)题第(24)题未选考题,考生根据要求作答。二、填空题:本大题共3小题,每小题5分(13)(14)(15)(16)4三、解答题:解答应写出文字说明,证明过程或演算步骤(17)(本小题满分12分)解:()由题意得,故,.由,得,即.由,得,所以.因此是首项为,公比为的等比数列,学科.网于是()由()得,由得,即,解得(18)(本小题满分12分)解:()由折线图这数据和附注中参考数据得,.因为与的相关系数近似为0.99,说明
10、与的线性相关相当高,从而可以用线性回归模型拟合与的关系.()由及()得,.所以,关于的回归方程为:.将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.(19)(本小题满分12分)解:()由已知得,取的中点,连接,由为中点知,. 又,故平行且等于,四边形为平行四边形,于是.因为平面,平面,所以平面.()取的中点,连结,由得,从而,且.以为坐标原点,的方向为轴正方向,建立如图所示的空间直角坐标系,学科.网由题意知,.设为平面的法向量,则,即,可取,于是.(20)解:由题设.设,则,且.记过两点的直线为,则的方程为. .3分()由于在线段上,故.记的斜率
11、为,的斜率为,则.所以. .5分()设与轴的交点为,则.由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为. .12分(21)(本小题满分12分)解:()()当时,因此, 4分当时,将变形为令,则是在上的最大值,且当时,取得极小值,极小值为令,解得(舍去),()当时,在内无极值点,所以()当时,由,知又,所以综上,9分()由()得.当时,.当时,所以.当时,所以.请考生在22、23、24题中任选一题作答。作答时用2B铅笔在答题卡上把所选题目题号后的方框涂黑。如果多做,则按所做的第一题计分。22.(本小题满分10分)选修
12、4-1:几何证明选讲解:()连结,则.因为,所以,又,所以.又,所以, 因此.()因为,所以,由此知四点共圆,其圆心既在的垂直平分线上,又在的垂直平分线上,故就是过四点的圆的圆心,所以在的垂直平分线上,因此.23.(本小题满分10分)选修4-4:坐标系与参数方程解:()的普通方程为,的直角坐标方程为. 5分()由题意,可设点的直角坐标为,因为是直线,所以的最小值,即为到的距离的最小值,. 8分当且仅当时,取得最小值,最小值为,此时的直角坐标为. 10分24.(本小题满分10分)选修4-5:不等式选讲解:()当时,.解不等式,得.因此,的解集为. 5分()当时,当时等号成立,所以当时,等价于. 7分当时,等价于,无解.当时,等价于,解得.所以的取值范围是. 10分