1、1.3 1.3 简单几何体的表面积和体积简单几何体的表面积和体积 1 1、表面积:几何体表面的面积、表面积:几何体表面的面积 2 2、体积:几何体所占空间的大小。、体积:几何体所占空间的大小。回忆复习有关概念回忆复习有关概念1、直棱柱:、直棱柱:2、正棱柱:、正棱柱:3、正棱锥:、正棱锥:4、正棱台:、正棱台:侧棱和底面侧棱和底面垂直垂直的棱柱叫直棱柱的棱柱叫直棱柱底面是正多边形的底面是正多边形的直直棱柱叫正棱柱棱柱叫正棱柱底面是正多边形,底面是正多边形,顶点在底面的射影是底面中心顶点在底面的射影是底面中心的棱锥的棱锥正棱锥正棱锥被平行于底面的平面所截,截面和底面之间的部分被平行于底面的平面所
2、截,截面和底面之间的部分叫正棱台叫正棱台作直三棱柱、正三棱锥、正三棱台各一个,找出作直三棱柱、正三棱锥、正三棱台各一个,找出斜高斜高CBAA1B1C1COBAPDC1D1A1ODBACB1斜高的概念 棱柱、棱锥、棱台都是由多个平面图形围成的几何体,棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h它们的侧面展开图还是平面图形,它们的侧面展开图还是平面图形,计算它们的计算它们的表面积就是计算它的各个侧面面积和底面面积表面积就是计算它的各个侧面面积和底面面积之和之和棱柱的侧面展开图是什么?如何计算它的表面积?棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图正棱柱的侧面展开图底侧表面
3、积SSS2把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?chhcbaS)(直棱柱侧habcabchh棱锥的侧面展开图是什么?如何计算它的表面积?棱锥的侧面展开图是什么?如何计算它的表面积?/h/h正三棱锥的侧面展开图正三棱锥的侧面展开图把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?hh21chS正棱锥侧正棱锥侧侧面展开正五棱锥的侧面展开图正五棱锥的侧面展开图底侧表面积SSS 例例1 已知棱长为已知棱长为a,各面均为等边三角形的四面,各面均为等边三角形的四面体体S-ABC,求它的表面积,求它的表面积 DBCAS 分析:四面体的展开图是由四个全等的正三角形分析:四面体的展开
4、图是由四个全等的正三角形组成组成因为因为BC=a,aSBSD2360sin所以:所以:243232121aaaSDBCSABC因此,四面体因此,四面体S-ABC 的表面积的表面积交交BC于点于点D解:先求解:先求 的面积,过点作的面积,过点作 ,ABCBCSD 22343.4Saa把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)类比梯形的面积)hh)21hccS(正棱台侧正棱台侧侧面展开hh正四棱台的侧面展开图正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的侧面展开图是什么?如何计算它的表面积?下底上底侧表面积SSSS例2:(1)一个正三棱柱的
5、底面是边长为5的正三角形,侧棱长为4,则其侧面积为 _;答:60(2)正四棱锥底面边长为6,高是4,中截面把棱锥截成一个小棱锥和一个棱台,求棱台的侧面积.79答:例3:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E思思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?rlr2 长长宽宽llSSr2 长长方方形形圆圆柱柱侧侧 圆柱的侧面展开图是矩
6、形圆柱的侧面展开图是矩形2222()Srrlr rlOOrl2 r 底侧表面积SSS2思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展开的图形与原图 有什么关系?有什么关系?rl180lnl 扇扇lR 扇扇rllllnSS 扇扇扇扇圆圆锥锥侧侧213602圆锥的侧面展开图是扇形圆锥的侧面展开图是扇形r2lOr2()Srrlr rl思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线思考:把圆柱、圆锥、圆台的侧面分别沿着一条母线 展开,分别得到什么图形展开,分别得到什么图形?展开的图形与原图展
7、开的图形与原图 有什么关系?有什么关系?1r2rllrrSS)21(扇环扇环圆台侧圆台侧 r2lOrO r2 r22()Srrr lrl xrxrxl rxr xr lS侧侧()()r lxr xrlrxr x()r lrl 参照圆柱和圆锥的侧面展开图,试想象圆台的参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么侧面展开图是什么 r2lOrO r2 r圆台的侧面展开图是圆台的侧面展开图是扇环扇环22()Srrr lrl lOrO r圆柱、圆锥、圆台三者的表面积公式之间有什么关系?圆柱、圆锥、圆台三者的表面积公式之间有什么关系?lOOrrr上底扩大上底扩大lOrr0上底缩小上底缩小222
8、2()Srrlr rl 2()Srrlr rl22()Srrr lrl 例例4 4 如图,一个圆台形花盆盆口直径如图,一个圆台形花盆盆口直径20 cm20 cm,盆,盆底直径为底直径为15cm15cm,底部渗水圆孔直径为,底部渗水圆孔直径为1.5 cm1.5 cm,盆壁长,盆壁长15cm15cm那么花盆的表面积约是多少平方厘米(那么花盆的表面积约是多少平方厘米(取取3.143.14,结果精确到,结果精确到1 1 )?)?2cmcm15cm20cm15 解:由圆台的表面积公式得解:由圆台的表面积公式得 花盆的表面积:花盆的表面积:2225.11522015215215S)(9992cm答:花盆的
9、表面积约是答:花盆的表面积约是999 999 2cm例5 圆台的上、下底面半径分别为2和4,高为 ,求其侧面展开图扇环所对的圆心角32答:1800例6:圆台的上、下底半径分别是10cm和20cm,它的侧面展开图的扇环的圆心角是1800,那么圆台的侧面积是多少?(结果中保留)小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式)cc21hS(正棱台侧C=021chS正三棱锥侧C=CchchS直棱柱侧S圆柱侧=2rlS圆锥侧=rlS圆台侧=(r1+r2)lr1=0r1=r2柱体、锥体、台体的表面积柱体、锥体、台体的表面积各面面积之和各面面积之和rr0 r展开图展开图)(22rll
10、rrrS 圆台圆台圆柱圆柱)(2lrrS)(lrrS圆锥圆锥几何体占有空间部分的大小叫做它的体积几何体占有空间部分的大小叫做它的体积一、体积的概念与公理一、体积的概念与公理:公理公理1、长方体的体积等于它的长、宽、高的积、长方体的体积等于它的长、宽、高的积。V长方体长方体=abc推论推论1、长方体的体积等于它的底面积、长方体的体积等于它的底面积s和高和高h的积的积。V长方体长方体=sh推论推论2、正方体的体积等于它的棱长、正方体的体积等于它的棱长a 的立方。的立方。V正方体正方体=a3定理定理1:柱体(棱柱、圆柱)的体积等于它柱体(棱柱、圆柱)的体积等于它的底面积的底面积 s 和高和高 h 的
11、积。的积。V柱体柱体=sh二:柱体的体积二:柱体的体积推论推论:底面半径为底面半径为r,高为高为h圆柱的体积是圆柱的体积是V圆柱圆柱=r2h三三:锥体体积锥体体积例例2 2:如图:三棱柱如图:三棱柱ADAD1 1C C1 1-BDC,-BDC,底面积为底面积为S S,高为高为h h.ABD C D1C1CDA BCD1ADCC1D1A答答:可分成可分成棱锥棱锥A-D1DC,棱锥棱锥A-D1C1C,棱锥棱锥A-BCD.问:(问:(1 1)从)从A A点出发棱柱能点出发棱柱能分割分割成几个三棱锥?成几个三棱锥?3.13.1锥体(棱锥、圆锥)的体积锥体(棱锥、圆锥)的体积 (底面积(底面积S,高高h
12、)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题问题:锥体锥体(棱锥、圆锥)棱锥、圆锥)的体积的体积shV31三棱锥定理定理如果一个锥体(棱锥、圆锥)的底面如果一个锥体(棱锥、圆锥)的底面 积是,高是,那么它的体积是:积是,高是,那么它的体积是:推论:如果圆锥的底面半径是推论:如果圆锥的底面半径是,高是,高是,那么它的体积是:那么它的体积是:hSS锥体锥体 3131圆锥圆锥 Shss/ss/hx四四.台体的体积台体的体积V V台体台体=1 1h(s+ss+s)h(s+ss+s)3 3上下底面积分别是上下底面积分别是s/,s,高是高是h,则,
13、则推论:如果圆台的上推论:如果圆台的上,下底面半径是下底面半径是r r1 1.r.r2,2,高是高是,那么它的体积是:,那么它的体积是:31圆台圆台 h)(222121rrrr五五.柱体、锥体、台体的体积公式之间有什么关系?柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,为底面面积,h为柱体高为柱体高ShV 0SS分别为上、下分别为上、下底面底面面积,面积,h 为台体高为台体高ShV31SS S为底面面积,为底面面积,h为锥体高为锥体高上底扩大上底扩大上底缩小上底缩小一、体积公式体积公式 例例7 有一堆规格相同的铁制(铁的密度是有一堆规格相同的铁制(铁的密度是 )六
14、角螺帽共重)六角螺帽共重5.8kg,已知底面是正六边,已知底面是正六边形,边长为形,边长为12mm,内孔直径为,内孔直径为10mm,高为,高为10mm,问这堆螺帽大约有多少个(问这堆螺帽大约有多少个(取取3.14)?)?3/8.7cmg 解:六角螺帽的体积是六棱柱解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即的体积与圆柱体积之差,即:10)210(14.3106124322V)(29563mm)(956.23cm所以螺帽的个数为所以螺帽的个数为252)956.28.7(10008.5(个)(个)答:这堆螺帽大约有答:这堆螺帽大约有252252个个例8从一个正方体中,如图那样截去4个三棱锥后
15、,得到一个正三棱锥ABCD,求它的体积是正方体体积的几分之几?答案:答案:A答案:答案:C4(教材习题改编教材习题改编)在在ABC中,中,AB2,BC3,ABC120,若使,若使ABC绕直线绕直线BC旋转一周所形旋转一周所形成的几何体的体积为成的几何体的体积为_答案:答案:35如图所示,某几何体的正视图、侧视图均为等腰三如图所示,某几何体的正视图、侧视图均为等腰三角形,俯视图是正方形,则该几何体的外接球的体角形,俯视图是正方形,则该几何体的外接球的体积是积是_1求体积时应注意的几点求体积时应注意的几点(1)求一些不规则几何体的体积常用割补的方法转化成已求一些不规则几何体的体积常用割补的方法转化
16、成已 知体积公式的几何体进行解决知体积公式的几何体进行解决(2)与三视图有关的体积问题注意几何体还原的准确性及与三视图有关的体积问题注意几何体还原的准确性及 数据的准确性数据的准确性2求组合体的表面积时注意几何体的衔接部分的处理求组合体的表面积时注意几何体的衔接部分的处理题型一题型一 几何体的展开与折叠几何体的展开与折叠 有一根长为有一根长为3 cm3 cm,底面半径为,底面半径为1 cm1 cm的的 圆柱形铁管,用一段铁丝在铁管上缠绕圆柱形铁管,用一段铁丝在铁管上缠绕2 2圈,并圈,并 使铁丝的两个端点落在圆柱的同一母线的两端使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?
17、则铁丝的最短长度为多少?把圆柱沿这条母线展开,将问题转把圆柱沿这条母线展开,将问题转 化为平面上两点间的最短距离化为平面上两点间的最短距离.题型分类题型分类 深度剖析深度剖析解解 把圆柱侧面及缠绕其上把圆柱侧面及缠绕其上的铁丝展开,在平面上得到的铁丝展开,在平面上得到矩形矩形ABCDABCD(如图所示),(如图所示),由题意知由题意知BCBC=3 cm=3 cm,ABAB=4 cm=4 cm,点,点A A与点与点C C分别是铁丝的起、止位分别是铁丝的起、止位置,故线段置,故线段ACAC的长度即为铁丝的最短长度的长度即为铁丝的最短长度.故铁丝的最短长度为故铁丝的最短长度为5 cm.5 cm.cm
18、,522BCABAC题型二题型二 旋转体的表面积及其体积旋转体的表面积及其体积 如图所示如图所示,半径为半径为R R的半圆内的的半圆内的 阴影部分以直径阴影部分以直径ABAB所在直线为轴所在直线为轴,旋旋 转一周得到一几何体转一周得到一几何体,求该几何体的求该几何体的 表面积表面积(其中其中BACBAC=30=30)及其体积及其体积.先分析阴影部分旋转后形成几何体的先分析阴影部分旋转后形成几何体的 形状形状,再求表面积再求表面积.解解 如图所示如图所示,过过C C作作COCO1 1ABAB于于O O1 1,在半圆中可得在半圆中可得BCABCA=90=90,BACBAC=30=30,ABAB=2
19、=2R R,ACAC=,BCBC=R R,S S球球=4=4R R2 2,R3,231RCO,231123234,2323,233232222112121RRRRSSSSRRRSRRRSBOAOBOAO侧圆锥侧圆锥球几何体表侧圆锥侧圆锥.23112R表面积为旋转所得到的几何体的 解决这类题的关键是弄清楚旋转后所解决这类题的关键是弄清楚旋转后所形成的图形的形状,再将图形进行合理的分割,形成的图形的形状,再将图形进行合理的分割,然后利用有关公式进行计算然后利用有关公式进行计算.652134)(41314131,34333111221111221113RRRVVVVBORCOBOVAORCOAOVR
20、VBOAOBOAO圆锥圆锥球几何体圆锥圆锥球又知能迁移知能迁移2 2 已知球的半径为已知球的半径为R R,在球内作一个内,在球内作一个内 接圆柱,这个圆柱底面半径与高为何值时,它接圆柱,这个圆柱底面半径与高为何值时,它 的侧面积最大?侧面积的最大值是多少?的侧面积最大?侧面积的最大值是多少?解解 如图为轴截面如图为轴截面.设圆柱的高为设圆柱的高为h h,底面半径为,底面半径为r r,侧面积为侧面积为S S,则,则,)2(222Rrh.2414,2,22,21.41)21(4)(442.2242242222222222RRRhRrRrRRrrRrrRrrhSrRh最大值是最大圆柱侧面积时即当且仅
21、当即题型三题型三 多面体的表面积及其体积多面体的表面积及其体积 一个正三棱锥的底面边长为一个正三棱锥的底面边长为6 6,侧棱长,侧棱长 为为 ,求这个三棱锥的体积,求这个三棱锥的体积.本题为求棱锥的体积问题本题为求棱锥的体积问题.已知底面已知底面 边长和侧棱长,可先求出三棱锥的底面面积边长和侧棱长,可先求出三棱锥的底面面积 和高,再根据体积公式求出其体积和高,再根据体积公式求出其体积.解解 如图所示,如图所示,正三棱锥正三棱锥S SABCABC.设设H H为正为正ABCABC的中心,的中心,连接连接SHSH,则则SHSH的长即为该正三棱锥的高的长即为该正三棱锥的高.15连接连接AHAH并延长交并延长交BCBC于于E E,则则E E为为BCBC的中点,且的中点,且AHAHBCBC.ABCABC是边长为是边长为6 6的正三角形,的正三角形,,33623AE.93393131312153215,Rt.393362121,.323222SHSV,AHSASH,AHSASHAAEBCSABCAEAHABCABC正三棱锥中在中在答案答案C