222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt

上传人(卖家):晟晟文业 文档编号:3660204 上传时间:2022-10-02 格式:PPT 页数:31 大小:285.65KB
下载 相关 举报
222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt_第1页
第1页 / 共31页
222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt_第2页
第2页 / 共31页
222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt_第3页
第3页 / 共31页
222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt_第4页
第4页 / 共31页
222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、一、复习回顾1、椭圆的定义、焦点、焦距;、椭圆的定义、焦点、焦距;2、椭圆的标准方程;、椭圆的标准方程;3、a、b、c的关系及其几何意义;的关系及其几何意义;4、待定系数法求椭圆的标准方程;、待定系数法求椭圆的标准方程;通常分三步:通常分三步:(1)确定焦点的位置;)确定焦点的位置;(2)设出椭圆的标准方程;)设出椭圆的标准方程;(3)求)求a、b的值,写出椭圆的标准方程的值,写出椭圆的标准方程.下面,我们通过椭圆的标准方程来研究椭圆的性质:二、学习新课我们知道,解析几何研究的主要问题是:(1)根据已知条件,求曲线的方程;(2)通过曲线的方程,研究曲线的性质.22221(0)xyabab横坐标

2、的范围:横坐标的范围:纵坐标的范围:纵坐标的范围:-a x a-b y b122ax1、范围、范围得:得:即即同理可得:由标准方程由标准方程)0(12222babyaxax|by|122by即F2F1OB2B1A1A2xy观察图形,你能看观察图形,你能看出它的范围吗?出它的范围吗?结论:椭圆位结论:椭圆位于直线于直线x=a和和y=b所围所围成的矩形框内成的矩形框内.F2F1Oxy椭圆关于y轴对称.2、对称性、对称性 在曲线方程里,如果以在曲线方程里,如果以-y代代y方程不变,那么方程不变,那么曲线关于曲线关于x轴对称;轴对称;动画演示动画演示 在曲线方程里,在曲线方程里,如果同时以如果同时以-

3、x代代x,以以-y代代y方程不变,方程不变,那么曲线关于原点那么曲线关于原点对称;对称;在曲线方程里,如果以在曲线方程里,如果以-x代代x方程不变,那么曲方程不变,那么曲线关于线关于y轴对称;轴对称;这说明当点P(x,y)在椭圆上时,它关于y轴的对称点P(-x,y)也在椭圆上.结论:坐标轴是椭圆的对称结论:坐标轴是椭圆的对称轴,坐标原点是椭圆的对称轴,坐标原点是椭圆的对称中心,也叫椭圆的中心。中心,也叫椭圆的中心。返回跳过OB2B1A1A2xy可得x=a从而:A1(-a,0),A2(a,0)同理:B1(0,-b),B2(0,b)2121BBAA、线段线段分别叫做椭圆的长轴和短轴分别叫做椭圆的长

4、轴和短轴.它们的长度分别等于它们的长度分别等于2a和和2b,a和和b分别叫分别叫做椭圆的长半轴长和短半轴长做椭圆的长半轴长和短半轴长.3、顶点、顶点在 中令y=0,22221(0)xyabab椭圆与对称轴的交点.2c叫焦距,c叫半焦距.4、离心率、离心率xyo如何刻画椭圆的扁平程度?动画演示动画演示概念:椭圆焦距与长轴长之比概念:椭圆焦距与长轴长之比.定义式:定义式:ace 范围:范围:10 e考察椭圆形状与考察椭圆形状与e的关系:的关系:1、当当e接近接近1时;时;2、当、当e接近接近0时;时;特别地,当特别地,当a=b时时,c=0,这时,这时两个焦点重合,图形变为圆。两个焦点重合,图形变为

5、圆。方程是什么呢?思考:教材思考:教材P46探究探究22221(0)xyabab22221(0)yxabab(01)ceea方程方程图形图形范围范围对称性对称性顶点顶点离心率离心率xA2B2F2yOA1B1F1yOA1B1xA2B2F1F2两种标准方程的椭圆性质的比较两种标准方程的椭圆性质的比较bybaxa,bxbaya,例1、求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并画出它的图形.解:把方程化为标准方程:1162522 yx所以所以:a=5,b=431625 c =顶点坐标为(-5,0),(5,0),(0,4),(0,-4)所以,长轴长2a=10,短轴长2

6、b=8;离心率为0.6;XYO焦点坐标为(-3,0),(3,0)例2、求符合下列条件的椭圆的标准方程:(1)经过点(-3,0)、(0,-2);(1)解:易知a=3,b=2又因为长轴在x轴上,14922yx所以椭圆的标准方程为(2)长轴的长等于20,离心率等于0.6(2)长轴的长等于20,离心率等于0.6(2)由已知,2a=20,e=0.6或因为椭圆的焦点可能在x轴上,也可能在y轴上,所以所求椭圆的标准方程为a=10,c=6b=822110064yx22110064xy练习练习1 1、求适合下列条件的椭圆的标准方程、求适合下列条件的椭圆的标准方程(1)(1)经过点经过点P(2,0)Q(1,1);

7、P(2,0)Q(1,1);(2)(2)(2)(2)与椭圆与椭圆4x2 2+9+9y2 2=36=36有相同的焦距有相同的焦距,且离且离心率为心率为0.8.0.8.116451612522 yx116451612522 xy或221443xy221(0,0,)xymnmnmn可直接设为:且标准方程标准方程图象图象范围范围|x|a,|y|b|x|b,|y|a对称性对称性关于两轴及原点对称关于两轴及原点对称关于两轴即原点对称关于两轴即原点对称顶点顶点 (a,0),(0,b)(b,0),(0,a)两轴长两轴长 长轴长轴2a,短轴,短轴2b 长轴长轴2a,短轴短轴2b焦点焦点焦距焦距 2c 2c离心率离

8、心率 e=c/a,0e1 e=c/a,0e1)0(12222babyax)0(12222babxayF1(-c,0),F2(c,0)F1(0,-c),F2(0,c)小结小结xA2B2F2yOA1B1F1yOA1B1xA2B2F1F2三、小结作业本节重点:本节重点:1、范围;、范围;2、对称性;、对称性;3、顶点、长半轴长、短半轴长、半焦距;、顶点、长半轴长、短半轴长、半焦距;4、离心率;、离心率;5、已知两点求椭圆的标准方程;、已知两点求椭圆的标准方程;作业:作业:P49 3、4、5 B组组3标准方程标准方程图象图象范围范围|x|a,|y|b|x|b,|y|a对称性对称性关于两轴及原点对称关于

9、两轴及原点对称关于两轴即原点对称关于两轴即原点对称顶点顶点 (a,0),(0,b)(b,0),(0,a)两轴长两轴长 长轴长轴2a,短轴,短轴2b 长轴长轴2a,短轴短轴2b焦点焦点焦距焦距 2c 2c离心率离心率 e=c/a,0e1 e=c/a,0e1)0(12222babyax)0(12222babxayF1(-c,0),F2(c,0)F1(0,-c),F2(0,c)小结小结xA2B2F2yOA1B1F1yOA1B1xA2B2F1F2例1、如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F1

10、上,片门位于另一个焦点F2上,由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2。已知ACF1F2,|F1A|=2.8cm,|F1F2|=4.5cm,求截口ABC所在椭圆的方程。OxyACF1F2BOxyACF1F2解:如图建立直角坐标系,设所求椭圆方程为12222byax在RtAF1F2中,222212125.48.2|FFAFAF由椭圆的定义知,aAFAF2|21AB所以1.4)5.48.28.2(21|)|(|212221AFAFa4.325.21.42222cab所求的椭圆方程为14.31.42222yx2214-5400.259 xylxyl例2:已知椭圆,直线:

11、椭圆上是否存在一点,它到直线 的距离最小?最小距离是多少?oxy450mllxyk解:设直线 平行于,则 可写成:224501259xykxy由方程组22258-2250yxkxk消去,得l思考:直线与椭思考:直线与椭圆会相交吗?为圆会相交吗?为什么?什么?m思考:如何求直思考:如何求直线与椭圆的最小线与椭圆的最小距离呢?距离呢?22064-4 25-2250kk 由,得()oxy12k25k25解得=,=-2225402515414145kmld由图可知,直线 与椭圆的交点到直线 的距离最近。且问题:最大的距离呢?2214-5400.259 xylxyl例2:已知椭圆,直线:椭圆上是否存在一

12、点,它到直线 的距离最小?最小距离是多少?mln两个启示:如何判断直线与椭圆的位置关两个启示:如何判断直线与椭圆的位置关系;求直线与椭圆的距离的最值系;求直线与椭圆的距离的最值.例例3、已知椭圆、已知椭圆4x2+y2=1及直线及直线y=x+m,(1)当直线和椭圆有公共点时,求实)当直线和椭圆有公共点时,求实数数m的取值范围;(的取值范围;(2)求被椭圆截得的)求被椭圆截得的最长弦所在的直线方程最长弦所在的直线方程.弦长公式:弦长公式:设直线设直线y=kx+m与椭圆相交于点与椭圆相交于点A(x1,y1),B(x2,y2),则则2121ABkxx22121214kxxx x22121kxx思考:椭

13、圆上到焦点的距离最大和最小椭圆上到焦点的距离最大和最小的点在什么地方?的点在什么地方?2、椭圆到中心的距离最大和最小的点呢?、椭圆到中心的距离最大和最小的点呢?oxyF1F21、如果将椭圆看作地球的轨道,、如果将椭圆看作地球的轨道,F1看作看作太阳,那么太阳,那么A、B分别为近日点、远日点分别为近日点、远日点.AB例4:点M(x,y)与定点F(4,0)的距离和它到定直线l:的距离的比等于常数 ,求M点的轨迹。54|dMFMP根据题意,点M(x,y)的轨迹是集合254x 45解:设d是点M到直线l:的距离,254x 22525922yx54|425|)4(22xyx由此得将上式两边平方,并化简,

14、得192522yx即这是一个椭圆。222(,)(,0):(0),(,0)Mx yFcalxccacMaFcl一般地,若点与定点的距离和它到定直线的距离之比为常数则点的轨迹是椭圆定点是椭圆的一个焦点,直线 叫做椭圆的准线椭圆的第二定义2|(0)MFcacda2222221(,0)xyF cabaxc对于椭圆,相应于焦点的准线方程是(右准线),12(,0)Fcaxc 根据椭圆的对称性,相应于焦点的准线方程是(左准线),M设是椭圆上任意一点,则11|(01)MFeed对左焦点和左准线有:22|(01)MFeed对右焦点和右准线有:三、小结作业本节重点:本节重点:1、直线与椭圆的位置关系;、直线与椭圆的位置关系;2、直线与椭圆相交所得的弦长公式;、直线与椭圆相交所得的弦长公式;3、近日点、远日点;、近日点、远日点;练习:练习:P48作业:作业:P49 8、9、10

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(222椭圆的简单几何性质(优秀经典公开课比赛课件).ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|