1、26.1.1 反比例函数1. 理解并掌握反比例函数的概念,根据反比例函数的定义求参数的取值. (重点)2. 从实际问题中抽象出反比例函数的概念,能根据已知 条件确定反比例函数的解析式. (重点、难点)学习目标 当杂技演员表演滚钉板的节目时,观众们看到密密麻麻的钉子,都为他们捏一把汗,但有人却说钉子越多,演员越安全,钉子越少反而越危险,你认同吗?为什么?讲授新课讲授新课反比例函数的概念一 下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.合作探究(1) 京沪线铁路全程为1463 km,某次列车的平均速 度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化
2、;1463.vt(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草 坪,草坪的长 y (单位:m) 随宽 x (单位:m)的 变化而变化;(3) 已知北京市的总面积为1.68104 km2 ,人均占 有面积 S (km2/人) 随全市总人口 n (单位:人) 的 变化而变化.41.68 10.Sn1000.yx 观察以上三个解析式,你觉得它们有什么共同特点?问题:1463vt,1000yx,41.68 10.Sn都具有 的形式,其中 是常数分式分子 (k为常数,k 0) 的函数,叫做反比例函数,其中 x 是自变量,y 是函数.一般地,形如kyx 反比例函数 (k0) 的自变量 x 的
3、取值范围是什么?kyx思考: 因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数. 例如,在前面得到的第一个解析式 中,t 的取值范围是 t0,且当 t 取每一个确定的值时,v 都有唯一确定的值与其对应.1463vt 反比例函数除了可以用 (k 0) 的形式表示,还有没有其他表达方式?kyx想一想:反比例函数的三种表达方式:(注意 k 0)kyx,1ykx,.xyk下列函数是不是反比例函数?若是,请指出 k 的值.是,k = 3不是不是不是练一练13yx3xy 111yx 31yx21yx是,111k 例1 已知函数 是反比例函数,求 m 的值.2223321mmymmx
4、典例精析方法总结:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可,如本题中 x 的次数为1,且系数不等于0.2. 已知函数 是反比例函数,则 k 必须满足 .(2)(1)kkyx1. 当m= 时, 是反比例函数.22myxk2 且 k11练一练确定反比例函数的解析式二例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.(1) 写出 y 关于 x 的函数解析式;提示:因为 y 是 x 的反比例函数,所以设 .把 x=2 和 y=6 代入上式,就可求出常数 k 的值.kyx解:设 . 因为当 x=2时,y=6,所以有 kyx6.2k解得 k =12. 因此
5、12.yx(2) 当 x=4 时,求 y 的值.解:把 x=4 代入 ,得12yx123.4y 方法总结:用待定系数法求反比例函数解析式的一般步骤:设出含有待定系数的反比例函数解析式,将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;解方程,求出待定系数; 写出反比例函数解析式.已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值161yx162.7 1y 练一练建立反比例函数模型表示实际问题的变量关系三例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体
6、是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式。解:设 . 由题意知,当 v =50时,f =80,kfv80.50k解得 k =4000. 因此 4000.fv所以例4 如图所示,已知菱形 ABCD 的面积为180,设它的两条对角线 AC,BD的长分别为x,y. 写出变量 y与 x 之间的关系式,并指出它是什么函数.ABCD解:因为菱形的面积等于两条对角线长乘积的一半,所以 1180.2ABCDSxy菱形所以变量 y与 x 之间的关系式为 ,它是反比例函数.360yx课
7、堂小结课堂小结建立反比例函数模型表示实际问题的变量关系用待定系数法求反比例函数解析式 反比例函数:定义/三种表达方式 反比例函数A. B. C. D.1. 下列函数中,y 是 x 的反比例函数的是 ( )A12yx 21yx 12yx11yx 当堂练习当堂练习2. 生活中有许多反比例函数的例子,在下面的实例中, x 和 y 成反比例函数关系的有 ( ) x人共饮水10 kg,平均每人饮水 y kg;底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m3;用铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 yA. 1个
8、 B. 2个 C. 3个 D. 4个B3. 填空 (1) 若 是反比例函数,则 m 的取值范围 是 . (2) 若 是反比例函数,则m的取值范 围是 . (3) 若 是反比例函数,则m的取值范围 是 . 1myxm 12m myxm 0 且 m 2212mmmyxm = 14. 已知变量 y 与 x 成反比例,且当 x = 3时,y =4. (1) 写出 y 关于 x 的函数解析式; (2) 当 y=6 时,求 x 的值.解:(1) 设 . 因为当 x = 3时,y =4,kyx4.3k 解得 k =12. 因此,y 关于 x 的函数解析式为 12.yx 所以有 (2) 把 y=6 代入 ,得
9、12yx 126.x 解得 x =2. 5. 小明家离学校 1000 m,每天他往返于两地之间,有 时步行,有时骑车假设小明每天上学时的平均速 度为 v ( m/min ),所用的时间为 t ( min ) (1) 求变量 v 和 t 之间的函数关系式; 解: (t0)1000vt(2) 小明星期二步行上学用了 25 min,星期三骑自行 车上学用了 8 min,那么他星期三上学时的平均 速度比星期二快多少? 1254085 ( m/min )答:他星期三上学时的平均速度比星期二快 85 m/min.解:当 t25 时, ;10004025v 当 t8 时, .10001258v 能力提升:6. 已知 y = y1+y2,y1与 (x1) 成正比例,y2 与 (x + 1) 成 反比例,当 x=0 时,y =3;当 x =1 时,y = 1,求:(1) y 关于 x 的关系式;解:设 y1 = k1(x1) (k10), (k20),221kyx则 .2111kykxx x = 0 时,y =3;x =1 时,y = 1,3=k1+k2 ,2112k ,k1=1,k2=2.21.1yxx (2) 当 x = 时,y 的值.12解:把 x = 代入 (1) 中函数关系式,得 y = 1211.2