二次函数图象及性质复习课件.ppt

上传人(卖家):晟晟文业 文档编号:3719108 上传时间:2022-10-07 格式:PPT 页数:31 大小:1.33MB
下载 相关 举报
二次函数图象及性质复习课件.ppt_第1页
第1页 / 共31页
二次函数图象及性质复习课件.ppt_第2页
第2页 / 共31页
二次函数图象及性质复习课件.ppt_第3页
第3页 / 共31页
二次函数图象及性质复习课件.ppt_第4页
第4页 / 共31页
二次函数图象及性质复习课件.ppt_第5页
第5页 / 共31页
点击查看更多>>
资源描述

1、退出退出一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系一、定义一、定义二、顶点与对称轴二、顶点与对称轴四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系一般地,如果一般地,如果 y=ax2+bx+c(a,b,c 是常数,是常数,a0),那么,那么,y叫做叫做x的的二次函数二次函数。三、解析式的求法三、解析式的求法一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系y=ax2+bx+cy=a(x+)2+b2

2、a4ac-b24a 对称轴对称轴:x=b2a顶点坐标顶点坐标:(:(,)b2a4ac-b24a一、定义一、定义二、顶点与对称轴二、顶点与对称轴三、解析式的求法三、解析式的求法四、图象位置与四、图象位置与a、b、c、的的正负关系正负关系 解析式解析式使用范使用范围围一般一般式式已知任意三个点顶点顶点式式已知顶点(h,k)及另一点交点交点式式已知与x轴的两个交点及另一个点y=ax2+bx+cy=a(x-h)2+ky=a(x-x1)(x-x2)(1)a确定抛物线的开口方向:确定抛物线的开口方向:a0a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00

3、a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00a0c=0c0ab=0ab0=00 x=-b2a例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个

4、最大(小)值是多少?(6)x为何值时,y0?1232例例1:1232解解:(1)a=0 抛物线的开口向上抛物线的开口向上 y=(x2+2x+1)-2=(x+1)2-2 对称轴对称轴x=-1,顶点坐标,顶点坐标M(-1,-2)121212例例1:1232解解:(2)由由x=0,得,得y=-抛物线与抛物线与y轴的交点轴的交点C(0,-)由由y=0,得,得x2+x-=0 x1=-3 x2=1 与与x轴交点轴交点A(-3,0)B(1,0)32323212例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标

5、。(3)画出函数图象的示意图。)画出函数图象的示意图。(4)求MAB的周长及面积。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0 xy(3)连线连线画对称轴画对称轴x=-1确定顶点确定顶点(-1,-2)(0,-)确定与坐标轴的交点确定与坐标轴的交点及对称点及对称点(-3,0)(1,0)3 2例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求)求MAB的周长及面积。的周长及面积

6、。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解0M(-1,-2)C(0,-)A(-3,0)B(1,0)3 2yxD:(4)由对称性可知)由对称性可知MA=MB=22+22=22AB=|x1-x2|=4 MAB的周长的周长=2MA+AB=2 22+4=4 2+4MAB的面积的面积=ABMD=42=41212例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积。(

7、5)x为何值时,为何值时,y随的增大而减小,随的增大而减小,x为何值时,为何值时,y有最大有最大 (小)值,这个最大(小)值是多少?(小)值,这个最大(小)值是多少?(6)x为何值时,y0?1232解解解解0 xx=-1(0,-)(-3,0)(1,0)3 2:(5)(-1,-2)当当x=-1时,时,y有最小值为有最小值为y最小值最小值=-2当当x-1时,时,y随随x的增大的增大而减小而减小;例例1:已知二次函数y=x2+x-(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)画出函数图象的示意图。(4)求MAB的周长及面积

8、。(5)x为何值时,y随的增大而减小,x为何值时,y有最大 (小)值,这个最大(小)值是多少?(6)x为何值时,为何值时,y0?1232解解:0(-1,-2)(0,-)(-3,0)(1,0)3 2yx由图象可知由图象可知(6)当当x1时,时,y 0当当-3 x 1时,时,y 0返回巩固练习巩固练习(1)二次函数)二次函数y=x2-x-6的图象顶点坐标的图象顶点坐标是是_对称轴是对称轴是_。(2)抛物线抛物线y=-2x2+4x与与x轴的交点坐标轴的交点坐标是是_(3)已知函数)已知函数y=x2-x-4,当函数值,当函数值y随随x的增大而减小时,的增大而减小时,x的取值范围是的取值范围是_(4)二

9、次函数)二次函数y=mx2-3x+2m-m2的图象的图象经过原点,则经过原点,则m=_。12(,-)125 24x=12(0,0)(2,0)x12返回归纳小结:归纳小结:(1)二次函数)二次函数y=ax2+bx+c及抛物线的性质和应用及抛物线的性质和应用 注意:图象的递增性,以及利用图象求自变量注意:图象的递增性,以及利用图象求自变量x或函或函数值数值y的取值范围的取值范围返回 (2)a,b,c,的正负与图象的位置关系的正负与图象的位置关系 注意:图象与轴有两个交点注意:图象与轴有两个交点A(x1,0),),B(x2,0)时)时AB=|x2-x1|=(x1+x2)2+4x1 x2=这一结论及推导过程。这一结论及推导过程。|a|能力训练能力训练 二次函数的图象如图所示,则在下列各不等式二次函数的图象如图所示,则在下列各不等式中成立的个数是中成立的个数是_1-10 xy返回abc0 a+b+c b2a+b=0 =b-4ac 02019POWERPOINTSUCCESS2022-10-72019THANK YOUSUCCESS2022-10-7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 医疗、心理类
版权提示 | 免责声明

1,本文(二次函数图象及性质复习课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|