1、2016年普通高等学校招生全国统一考试浙江文科数学1.(2016浙江,文1)已知全集U=1,2,3,4,5,6,集合P=1,3,5,Q=1,2,4,则(UP)Q=()A.1B.3,5C.1,2,4,6D.1,2,3,4,5答案C由题意,得UP=2,4,6,又Q=1,2,4,所以(UP)Q=1,2,4,6,故选C.2.(2016浙江,文2)已知互相垂直的平面,交于直线l.若直线m,n满足m,n,则()A.mlB.mnC.nlD.mn答案C对于选项A,=l,l,m,m与l可能平行,也可能异面,故选项A不正确;对于选项B,D,m,n,m与n可能平行,可能相交,也可能异面,故选项B,D不正确.对于选项
2、C,=l,l.n,nl.故选C.3.(2016浙江,文3)函数y=sin x2的图象是()答案Df(-x)=sin(-x)2=sin x2=f(x),y=sin x2的图象关于y轴对称,排除A,C;又当x=2时,sin241,排除B,故选D.4.(2016浙江,文4)若平面区域x+y-30,2x-y-30,x-2y+30夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.355B.2C.322D.5答案B画平面区域x+y-30,2x-y-30,x-2y+30如图阴影部分所示.两平行直线的斜率为1,两平行直线与直线x+y-3=0垂直,两平行线间的最短距离是AB的长度.由x+
3、y-3=0,x-2y+3=0,得A(1,2).由x+y-3=0,2x-y-3=0,得B(2,1).|AB|=(1-2)2+(2-1)2=2,故选B.5.(2016浙江,文5)已知a,b0且a1,b1.若logab1,则()A.(a-1)(b-1)0C.(b-1)(b-a)0答案D当0a1得ba.a1,ba1,b-a0,b-10,a-10,(a-1)(a-b)0.排除A,B,C.当a1时,由logab1得ba1.b-a0,b-10.(b-1)(b-a)0.故选D.6.(2016浙江,文6)已知函数f(x)=x2+bx,则“b0”是“f(f(x)的最小值与f(x)的最小值相等”的()A.充分不必要
4、条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案Af(x)=x2+bx=x+b22-b24,当x=-b2时,f(x)取最小值-b24.令t=f(x),则t-b24,f(t)=t2+btt-b24.对称轴为t=-b2,又t-b24,当-b24-b2,即b0或b2时,f(t)的最小值在t=-b2处取得,且f(t)的最小值与f(x)的最小值相等.综上,可知b0),则A=,b=.答案21解析因为2cos2x+sin 2x=1+cos 2x+sin 2x=2sin2x+4+1,所以A=2,b=1.12.(2016浙江,文12)设函数f(x)=x3+3x2+1.已知a0,且f(x)-f(
5、a)=(x-b)(x-a)2,xR,则实数a=,b=.答案-21解析因为f(x)-f(a)=x3+3x2+1-a3-3a2-1=x3+3x2-a3-3a2,(x-b)(x-a)2=x3-(2a+b)x2+(a2+2ab)x-a2b,所以-2a-b=3,a2+2ab=0,-a2b=-a3-3a2,解得a=-2,b=1.13.(2016浙江,文13)设双曲线x2-y23=1的左、右焦点分别为F1,F2.若点P在双曲线上,且F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.答案(27,8)解析由题意,知a=1,b=3,c=2,则e=ca=2.设P(x,y)是双曲线上任一点,由双曲线的对称
6、性不妨设P在右支上,由F1PF2为锐角三角形,可知1x|F1F2|2,即(2x+1)2+(2x-1)242,解得x72,所以72x2,所以|PF1|+|PF2|=4x(27,8).14.(2016浙江,文14)如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD=5,ADC=90.沿直线AC将ACD翻折成ACD,直线AC与BD所成角的余弦的最大值是.答案66解析设直线AC与BD所成角为.设O是AC中点,由已知得AC=6,如图,以直线OB为x轴,直线OA为y轴,过O与平面ABC垂直的直线为z轴,建立空间直角坐标系,由A0,62,0,B302,0,0,C0,-62,0.作DHAC于H,翻折
7、过程中,DH始终与AC垂直,在RtADC中,可知CH=CD2CA=16=66,则OH=63,DH=156=306,因此可设D306cos,-63,306sin,则BD=306cos-302,-63,306sin.因为与CA平行的单位向量为n=(0,1,0).所以cos =|cos|=BDn|BD|n|=639-5cos,所以cos =1时,cos 取最大值66.15.(2016浙江,文15)已知平面向量a,b,|a|=1,|b|=2,ab=1.若e为平面单位向量,则|ae|+|be|的最大值是.答案7解析由已知得=60,不妨取a=(1,0),b=(1,3).设e=(cos ,sin ),则|a
8、e|+|be|=|cos |+|cos +3sin |cos |+|cos |+3|sin |=2|cos |+3|sin |,取等号时cos 与sin 同号.所以2|cos |+3|sin |=|2cos +3sin |=727cos+37sin=7|sin(+)|其中sin=27,cos=37,取为锐角.显然7|sin(+)|7.易知当+=2时,|sin(+)|取最大值1,此时为锐角,sin ,cos 同为正,因此上述不等式中等号能同时取到.故所求最大值为7.16.(2016浙江,文16)在ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2acos B.(1)证明:A=2B;
9、(2)若cos B=23,求cos C的值.证明(1)由正弦定理得sin B+sin C=2sin Acos B,故2sin Acos B=sin B+sin(A+B)=sin B+sin Acos B+cos Asin B,于是sin B=sin(A-B).又A,B(0,),故0A-Bn+2,故bn=3n-1-n-2,n3.设数列bn的前n项和为Tn,则T1=2,T2=3.当n3时,Tn=3+9(1-3n-2)1-3-(n+7)(n-2)2=3n-n2-5n+112,所以Tn=2,n=1,3n-n2-5n+112,n2,nN*.18.(2016浙江,文18)如图,在三棱台ABC-DEF中,平
10、面BCFE平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE平面ABC,且ACBC,所以AC平面BCK,因此BFAC.又因为EFBC,BE=EF=FC=1,BC=2,所以BCK为等边三角形,且F为CK的中点,则BFCK.所以BF平面ACFD.(2)解因为BF平面ACK,所以BDF是直线BD与平面ACFD所成的角.在RtBFD中,BF=3,DF=32,得cosBDF=217,所以,直线BD与平面ACFD所成角的余弦值为217.19.(
11、2016浙江,文19)如图,设抛物线y2=2px(p0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.解(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得p2=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t0,t1.因为AF不垂直于y轴,可设直线AF:x=sy+1(s0),由y2=4x,x=sy+1消去x得y2-4sy-4=0,故y1y2=-4,所以,B1t2,-2t.又直线AB的斜率为2tt2-1,故直线FN的斜率为-t2-12t.从而得直线FN:y=-t2-12t(x-1),直线BN:y=-2t.所以Nt2+3t2-1,-2t.设M(m,0),由A,M,N三点共线得2tt2-m=2t+2tt2-t2+3t2-1,于是m=2t2t2-1.所以m2.经检验,m2满足题意.综上,点M的横坐标的取值范围是(-,0)(2,+).20.(2016浙江,文20)设函数f(x)=x3+11+x,x0,1.证明:(1)f(x)1-x+x2;(2)3434,所以f(x)34.综上,34f(x)32.