立体几何全章课件(13).ppt

上传人(卖家):晟晟文业 文档编号:3860508 上传时间:2022-10-19 格式:PPT 页数:25 大小:974.50KB
下载 相关 举报
立体几何全章课件(13).ppt_第1页
第1页 / 共25页
立体几何全章课件(13).ppt_第2页
第2页 / 共25页
立体几何全章课件(13).ppt_第3页
第3页 / 共25页
立体几何全章课件(13).ppt_第4页
第4页 / 共25页
立体几何全章课件(13).ppt_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、空间向量及其运算空间向量及其运算苏苑中学高三数学学科组苏苑中学高三数学学科组12 31第第 课时课时1 如果如果l l是经过点是经过点A A且平行于已知非且平行于已知非零向量零向量 的直线,那么对任一点的直线,那么对任一点OO,点,点P P在直线在直线l l上的充要条件是存上的充要条件是存在实数在实数t t,满足等式:,满足等式:aa tOAOP三个向量共面的充要条件三个向量共面的充要条件:定理:如果两个向量定理:如果两个向量 不不共线,则向量共线,则向量 与向量与向量 共共面的充要条件是存在实数对面的充要条件是存在实数对x x、y y,使使:ba与pba,byaxp 推论:空间一点推论:空间

2、一点P P位于平面位于平面MABMAB内内的充要条件是存在有序实数对的充要条件是存在有序实数对x x、y y,使:使:或对空间任意一点或对空间任意一点O O,有:,有:MByMAxMPMByMAxOMOP例例1 1 对空间任一点对空间任一点O O和不共线的三点和不共线的三点A A、B B、C C,满,满足:足:,其中,其中x+y+z=1,x+y+z=1,试问:点试问:点P P、A A、B B、C C是否是否共面?若共面?若x+y+z1,x+y+z1,则结论是否依然则结论是否依然成立?成立?OCzOByOAxOP例例2 2 已知平行四边形已知平行四边形ABCDABCD,从平面,从平面ACAC外一

3、点外一点O O引向量引向量 ,求证:,求证:(1)(1)四点四点E E、F F、G G、H H共面;共面;(2)(2)平面平面EGEG平面平面AC AC OAkOE OBkOF OCkOG ODkOH 例例3 3 在棱长为在棱长为a a的正方体的正方体OABC-OOABC-O1 1A A1 1B B1 1C C1 1中,中,E E、F F分别是分别是棱棱ABAB、BCBC上的动点,且上的动点,且AE=BFAE=BF,求证:求证:A A1 1FCFC1 1E E 2第第 课时课时2空间向量基本定理:空间向量基本定理:如果三个向量如果三个向量 不共面,不共面,那么对空间任一向量那么对空间任一向量

4、,存在一,存在一个唯一的有序实数对个唯一的有序实数对x x、y y、z z,使,使 cba,pczbyaxp 推论:推论:设设OO、A A、B B、C C是不共面的四是不共面的四个点,则对空间任一点个点,则对空间任一点P P,都存在,都存在唯一的三个有序实数唯一的三个有序实数x x、y y、z z,使,使 OCzOByOAxOP例例1 1 利用空间向量的方法证明直线与利用空间向量的方法证明直线与平面垂直的判定定理:平面垂直的判定定理:如果一条直线与平面内的两相如果一条直线与平面内的两相交直线都垂直,则这条直线与这个平交直线都垂直,则这条直线与这个平面垂直面垂直.例例2 2 已知:在空间四边形已

5、知:在空间四边形OABCOABC中,中,OABCOABC,OBACOBAC,求证求证:OCAB:OCAB 例例3 3 已知线段已知线段ABAB在平面在平面 内,内,线段线段ACAC,线段,线段BDABBDAB,且,且与所成的角为与所成的角为3030,如果,如果AB=aAB=a,AC=BD=b,AC=BD=b,求求C C、D D间的距离间的距离.3第第 课时课时31 1、给出下列命题:、给出下列命题:(1)(1)若向量若向量 共线,向量共线,向量 共线,则向量共线,则向量 共线共线 (2)(2)向量向量 共面即它们所在的直线共面;共面即它们所在的直线共面;(3)(3)若向量若向量 平行,则存在唯

6、一的实数平行,则存在唯一的实数mm,使,使(4)(4)已知已知A A、B B、C C三点不共线,对平面三点不共线,对平面ABCABC外的任一点外的任一点,若,若 ,则点是,则点是ABCABC的的重重 心。心。其中不正确的命题的序号是其中不正确的命题的序号是 .ba与bc与ca与cba,ba与bmaOCOBOAOM313131 2 2、已知、已知 是空间向量的是空间向量的一组基底,则下列向量中可以与向量一组基底,则下列向量中可以与向量 构成基底的是构成基底的是()()(A)(B)(A)(B)(C)(D)(C)(D)cba,baqbap,abba2ca23 3、若向量、若向量 均为非零向量,则均为

7、非零向量,则 是向量是向量 平行的平行的()()(A)(A)充分不必要条件充分不必要条件 (B)(B)必要不充分条件必要不充分条件 (C)(C)充要条件充要条件 (D)(D)非充分非必要条件非充分非必要条件 ba与|bababa与 4 4、已知正方体、已知正方体ABCD-AABCD-A1 1B B1 1C C1 1DD1 1,点点F F是侧面是侧面CDCD1 1的中心,若的中心,若 ,则,则 m=m=,n=,n=。1AAnABmADAF 5 5、对空间任意一点,若对空间任意一点,若 ,则,则A A、B B、C C、P P四点四点()()(A)(A)不一定共面不一定共面 (B)(B)一定共面一定

8、共面 (C)(C)一定不共面一定不共面 (D)(D)无法判定无法判定OCOBOAOP818143 例例1 1 用向量方法求证:长方用向量方法求证:长方体的体对角线长的平方等于它的体的体对角线长的平方等于它的长、宽、高的平方和长、宽、高的平方和 .例例2 2 在在6060的两面角的两面角-l-l-中,中,已知,已知A A、B B到直线到直线l l的距离分别是的距离分别是2 2和和4 4,且,且AB=10AB=10,求求CDCD的长的长.例例3 3 在正方体在正方体ABCD-AABCD-A1 1B B1 1C C1 1DD1 1中,中,E E、F F分别是分别是BBBB1 1、DCDC的中的中点点 (1)(1)求求AEAE与与D D1 1F F所成的角;所成的角;(2)(2)证明证明AEAE平面平面A A1 1D D1 1F F。再见

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(立体几何全章课件(13).ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|