1、第二十三章第二十三章 旋转复习旋转复习 应城市实验初级中学应城市实验初级中学旋转1、梳理本单元知识,全面理解图形的旋转、中心对称、中心对称图形的 意义和特征2、经历运用知识、技能,解决问题的过程,发展学生的独立思考能力和创 新精神通过对本单元的回顾,在反思中交流,体验知识体系的价值3、培养识图能力,进一步发展空间想象力,提高合情推理能力,感受变换 的实际应用价值,同时加强学生的思维意识重点:了解图形旋转的特征,认识旋转的基本性质、中心对称及其性质 难点:旋转图形性质的应用,并能按要求进行图案设计重点:了解图形旋转的特征,认识旋转的基本性质、中心对称及其性质 难点:旋转图形性质的应用,并能按要求
2、进行图案设计教学目标:教学重点和难点:旋转(1)旋转中心是 ,旋转方向 是 ,旋转角度是 .(2)图中OA=,OB=,OC=;AOA1=.(3)A1B1C1和ABC是全等形 吗?(4)作图:请同学们作出把 A1B1C1绕O点顺时针方向旋 转90的图形A2B2C2.一、知识回顾与梳理1、如图,A1B1C1是由ABC旋转90得到的.旋转 2、(1)上图中的ABC和A2B2C2有什么位置关系?A、O、A 1是否在同一直线上?O是A A 1的中点吗?一、知识回顾与梳理(2)作出A1B1C1关于点O成中心 对称的 图形A3B3C3.(3)点P(x,y)关于原点对称的点 的坐标点 P().旋转 3、展示由
3、ABC 绕点O旋转得到的图案.(1)这四个三角形组成的图案是什么对称图形?(2)中心对称和中心对称图形的关系:一、知识回顾与梳理例例1下列图形中,轴对称图形有(),中心对称图形有(),既是中心对称图形又是轴对称图形的有()既是既是中心对称,既是中心对称图形又是轴对称图形的是ABCDFE二、旋转应用与拓展B E FA D E FE F旋转 例2.如图,CED是由ABC绕着某一点旋转所得,请指出其旋转中心及旋转角.(1)旋转中心:旋转中心:对应点连线段的垂 直平分线的交点.(2)旋转角:旋转角:对应点与旋转中心连 线段的夹角.二、旋转应用与拓展旋转例3 已知如图,四边形ABCD及一点P画出四边形
4、ABCD,使得它和四边形ABCD关于点P中心对称ABCD四边形ABCD即为所求.二、旋转应用与拓展旋转例4.如图,图1中的梯形符合什么条件时,可以经过旋转形成图2中的图案?请说说你的变换过程。图1图2三、图案设计(1)怎样旋转得到?(2)怎样旋转得到?(3)怎样旋转得到?旋转例5.如图,44的方格(每个小正方形的边长均为1个单位长)中有三个点A、B、C,要求作一个面积为4的四边形,使这三个点在这个四边形的边上(包括顶点),且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.l图乙图甲图丙三、图案设计旋转四、归纳与小结旋转五、思考与练习 1、下列图案中,是轴对称图形的有();是中心对称图形的有();既是中心对称图形又是轴对称图形的有().A B C D E A B C D EA CB CC旋转五、思考与练习2、如图,下图图1中的梯形可以经 过轴对称形成图2中的图案?请你说说你的变换过程.11234图1图2旋转五、思考与练习旋转4、如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹(用3种办法).五、思考与练习旋转应城市实验初级中学应城市实验初级中学 李三红李三红谢谢 谢谢2018年11月