1、第四章第四章 环境规划与管理的环境规划与管理的 数学基础数学基础 第一节第一节 环境数据处理方法环境数据处理方法 第二节第二节 最优化分析方法最优化分析方法 第三节第三节 常用决策分析方法常用决策分析方法 第四节第四节 环境数学模型环境数学模型 第一节第一节 环境数据处理方法环境数据处理方法 一、数据的表示方法一、数据的表示方法 列表法 将数据列成表格,将各变量的数值将数据列成表格,将各变量的数值 依照一定的形式和顺依照一定的形式和顺序一一对应起来,它通常是整理数据的第一步,能为标绘序一一对应起来,它通常是整理数据的第一步,能为标绘曲线图或曲线图或 整理成数学公式打下基础。整理成数学公式打下基
2、础。图示法 将数据用图形表示出来,它能用将数据用图形表示出来,它能用 更加直观和形象的形式更加直观和形象的形式将复杂的数据表现出来将复杂的数据表现出来,可以直观地看出数据变化的特征可以直观地看出数据变化的特征和规律和规律,为后一步数学模型的建立提供依据为后一步数学模型的建立提供依据。插值法计算数值1、列表法、列表法 例:研究电阻的阻值与温度的关系时,测试结果如下:例:研究电阻的阻值与温度的关系时,测试结果如下:测量序号测量序号温度温度t/电阻电阻R/110.510.42229.410.92342.711.32460.011.80575.012.24691.012.672、图示法、图示法 图示法
3、的第一步就是按列图示法的第一步就是按列表法的要求列出因变量表法的要求列出因变量y与与自变量自变量x相对应的相对应的yi与与xi数数据表格。据表格。作曲线图时必须依据一定作曲线图时必须依据一定的法则,只有遵守这些法的法则,只有遵守这些法则,才能得到与实验点位则,才能得到与实验点位置偏差最小而光滑的曲线置偏差最小而光滑的曲线图形。图形。坐标纸的选择坐标纸的选择-常用的坐标常用的坐标系为直角坐标系,包括笛系为直角坐标系,包括笛卡尔坐标系(又称普通直卡尔坐标系(又称普通直角坐标系)、半对数坐标角坐标系)、半对数坐标系和对数坐标系。系和对数坐标系。2、图示法、图示法半对数坐标系 一个轴是分度均匀的普通坐
4、标轴,另一个轴是分度不均匀的对数坐标轴。右图中的横坐标轴(x轴)是对数坐标。在此轴上,某点与原点的实际距离为该点对应数的对数值,但是在该点标出的值是真数。为了说明作图的原理,作一条平行于横坐标轴的对数数值线。半对数坐标的标度法半对数坐标的标度法对数坐标系对数坐标系 两个轴两个轴(x和和y)都是对数标度的坐标轴,即每个轴的标度都是按上面所述的原都是对数标度的坐标轴,即每个轴的标度都是按上面所述的原则作成的则作成的 例:用分光光度计法测定溶液中铁的含量例:用分光光度计法测定溶液中铁的含量,测得标准曲线数据如下:测得标准曲线数据如下:Fe Fe(g/mLg/mL)2 4 6 8 10 12 2 4
5、6 8 10 12 吸光度(吸光度(A A)0.097 0.200 0.304 0.408 0.510 0.613 0.097 0.200 0.304 0.408 0.510 0.613 测得未知液的吸光度为,试求未知液中铁的含量。测得未知液的吸光度为,试求未知液中铁的含量。工作曲线y=0.0516x-0.0061R2=100.10.20.30.40.50.60.702468101214Fe的浓度(g/mL)吸光度(A)在图的纵坐标上处找到直线上对应点,读出其对应的横坐标即为未知在图的纵坐标上处找到直线上对应点,读出其对应的横坐标即为未知液中铁的含量液中铁的含量 3 3、插值法计算数值、插值法
6、计算数值 (1 1)作图插值法)作图插值法babcbabcyyyyxxxx所以()()()bbababccbayxxyyxxyxx此式即为比例法内插公式,从图上可看出,因为用yc 代替了yd,产生了dcyyy 的误差。(2 2)比例法)比例法(3 3)牛顿内插公式)牛顿内插公式2012nnyaa xa xa x例:制作例:制作 的查分表。的查分表。32yxx 表中表中y y表示表示y y的依次差值,的依次差值,y y2 2表示表示y y的差值的差值,的差值的差值,以此类推。以此类推。在上面的例子中,在上面的例子中,x x的差值为的差值为1 1,实际上,实际上x x的差值可以为任的差值可以为任意
7、恒量,令此恒量为意恒量,令此恒量为h h,做出差分表的通式。,做出差分表的通式。(二)数据特征(二)数据特征n数据特征是对环境总体状况进行估计判断的基础,是认数据特征是对环境总体状况进行估计判断的基础,是认识数据理论特性的基本出发点,通常可分为以下三类:识数据理论特性的基本出发点,通常可分为以下三类:n位置特征数位置特征数:表示数据集中趋势或刻画频数分布图中心位表示数据集中趋势或刻画频数分布图中心位置的特征数;置的特征数;n离散特征数离散特征数:用来描述数据分散程度;用来描述数据分散程度;n分布形态特征数分布形态特征数:刻划了根据所获数据绘制的分布曲线图刻划了根据所获数据绘制的分布曲线图的形态
8、。的形态。1.1.位置特征数位置特征数(1 1)算术平均数:)算术平均数:式中:式中:x x1 1,x,x2 2,x,xn n为样本个体数据,为样本个体数据,n n为样本个数为样本个数nxnxxxxniin121(2 2)加权平均数)加权平均数 如果样本个体数据如果样本个体数据x x1 1,x,x2 2,x,xn n取值因频取值因频 数数不同或对总体重要性有所差别,则常采取加权平均方不同或对总体重要性有所差别,则常采取加权平均方法。法。niiniiinnnwwxwwwwxwxwxwx11212211式中:式中:w wi i是个体数据出现频数,或是因该个体对样本是个体数据出现频数,或是因该个体对
9、样本贡献不同而取的不同的数值。贡献不同而取的不同的数值。nnnnGxxxxxxx121211.1.位置特征数位置特征数niinxnxxxnH1211111(4 4)调和平均数)调和平均数(3 3)几何平均数)几何平均数1.位置特征数位置特征数(5)中位数)中位数 环境数据有时显得比较分散,甚至个别的环境数据有时显得比较分散,甚至个别的数据离群偏远,难以判断去留,这时往往数据离群偏远,难以判断去留,这时往往用到中位数。用到中位数。样本数据依次排列(从大到样本数据依次排列(从大到小或者从小到大)居中间位置的数即为中小或者从小到大)居中间位置的数即为中位数,若数据个数为偶数,则中位数为正位数,若数据
10、个数为偶数,则中位数为正中两个数的平均值。中两个数的平均值。只有当数据的分布呈只有当数据的分布呈正态分布时,中位数才代表这组数据的中正态分布时,中位数才代表这组数据的中心趋向,近似于真值。心趋向,近似于真值。1.1.位置特征数位置特征数n环境统计中常常用到几何平均数。环境统计中常常用到几何平均数。n不同的平均值都有各自适用场合,选择的平均数指标不同的平均值都有各自适用场合,选择的平均数指标应能反映数据典型水平,并非随意采用。应能反映数据典型水平,并非随意采用。3121/g123pg(.)lnexp()或 nnnNiiddddnddN几何平均直径几何平均直径 2.2.离散特征数离散特征数3.3.
11、分布形态特征数分布形态特征数 二、异常数据的剔除二、异常数据的剔除 n在处理实验数据的时候,我们常常会遇到个别数据偏离在处理实验数据的时候,我们常常会遇到个别数据偏离预期或大量统计数据结果的情况,如果我们把这些数据预期或大量统计数据结果的情况,如果我们把这些数据和正常数据放在一起进行统计,可能会影响实验结果的和正常数据放在一起进行统计,可能会影响实验结果的正确性,如果把这些数据简单地剔除,又可能忽略了重正确性,如果把这些数据简单地剔除,又可能忽略了重要的实验信息。这里重要的问题是如何判断异常数据,要的实验信息。这里重要的问题是如何判断异常数据,然后将其剔除。判断和剔除异常数据是数据处理中的一然
12、后将其剔除。判断和剔除异常数据是数据处理中的一项重要任务,目前的一些方法还不是十分完善,有待进项重要任务,目前的一些方法还不是十分完善,有待进一步研究和探索。一步研究和探索。n目前人们对异常数据的判别与剔除主要采用物理判别目前人们对异常数据的判别与剔除主要采用物理判别法和统计判别法两种方法。法和统计判别法两种方法。n物理判别法就是根据人们对客观事物已有的认识,判物理判别法就是根据人们对客观事物已有的认识,判别由于外界干扰、人为误差等原因造成实测数据偏离别由于外界干扰、人为误差等原因造成实测数据偏离正常结果,在实验过程中随时判断,随时剔除。正常结果,在实验过程中随时判断,随时剔除。n统计判别法是
13、给定一个置信概率,并确定一个置信限,统计判别法是给定一个置信概率,并确定一个置信限,凡超过此限的误差,就认为它不属于随机误差范围,凡超过此限的误差,就认为它不属于随机误差范围,将其视为异常数据剔除将其视为异常数据剔除。n n剔除异常数据实质上是区别异常数据由偶然误差还剔除异常数据实质上是区别异常数据由偶然误差还是系统误差造成的问题。是系统误差造成的问题。n若是人为因素的偶然误差就应剔除,如果没有足够若是人为因素的偶然误差就应剔除,如果没有足够的理由证实是偶然过失造成的时候,应对数据进行的理由证实是偶然过失造成的时候,应对数据进行统计处理,采用一定的检验方法来决定取舍。统计处理,采用一定的检验方
14、法来决定取舍。n本节着重介绍统计判别法。本节着重介绍统计判别法。1.1.拉依达准则拉依达准则 则应将则应将x xp p从该组数据中剔除,至于选择从该组数据中剔除,至于选择3s3s还是还是2s2s与与显著性水平显著性水平有关,显著性水平有关,显著性水平表示的是检验出错的表示的是检验出错的几率为几率为,或检验的可置信度为,或检验的可置信度为1 1。3s3s相当于显著相当于显著水平,水平,2s2s相当于显著水平。相当于显著水平。s23 或sxxdpp 若可疑数据若可疑数据x xp p与样本数据之算术平均值的偏差的绝与样本数据之算术平均值的偏差的绝对值大于对值大于3 3倍(倍(2 2倍)的标准偏差,即
15、:倍)的标准偏差,即:2.2.格拉布斯准则格拉布斯准则 用格拉布斯准则检验可疑数据用格拉布斯准则检验可疑数据x xp p时,选取一定的显时,选取一定的显著性水平著性水平 ,若:,若:则应将则应将x xp p从该组数据中剔除,从该组数据中剔除,称为格拉布斯检称为格拉布斯检验临界值,可查相关表格得到。验临界值,可查相关表格得到。sxxdnpp),(),(n),(n 以上准则是以数据按正态分布为前提的,当偏离正态以上准则是以数据按正态分布为前提的,当偏离正态分布分布,特别是测量次数很少时,则判断的可靠性就差。因特别是测量次数很少时,则判断的可靠性就差。因此,对粗大误差除用剔除准则外,更重要的是要提高
16、工作此,对粗大误差除用剔除准则外,更重要的是要提高工作人员的技术水平和工作责任心。另外人员的技术水平和工作责任心。另外,要保证测量条件稳要保证测量条件稳定,防止因环境条件剧烈变化而产生的突变影响。定,防止因环境条件剧烈变化而产生的突变影响。3.3.狄克逊(狄克逊(dixondixon)法)法n狄克逊研究了狄克逊研究了n n次测量结果,按其数值大小排列成如下次次测量结果,按其数值大小排列成如下次序:序:n 当当 x xi i 服从正态分布时服从正态分布时(1)(2)()n 狄克逊法是采用极差比的方法,经严密推算和简化而得狄克逊法是采用极差比的方法,经严密推算和简化而得到的准则。到的准则。n用不同
17、的公式求得用不同的公式求得 f f 值,再经过查表,得到相应的值,再经过查表,得到相应的临界值,进行比较临界值,进行比较,若计算值若计算值 f(nf(n,)视为异常值,视为异常值,舍弃;再对剩余数值进行检验,直到没有异常值为舍弃;再对剩余数值进行检验,直到没有异常值为止。狄克逊通过模拟实验认为:止。狄克逊通过模拟实验认为:n7n7,使用使用 f f1010 ;8n108n10,用用 f f1111 ;11n1311n13,用用 f f2121 ;n14n14,用用 f f2222 效果好。效果好。n 例题例题 n用狄克逊法判断下列测试数据用狄克逊法判断下列测试数据,40.16)40.16)中的
18、中的是否应舍弃?是否应舍弃?n解:将数据排列,取解:将数据排列,取 =0.05 =0.05 n40.02 40.13 40.15 40.16 40.20 40.02 40.13 40.15 40.16 40.20 n n n ,0.642 0.642 n n应保留。应保留。1040.13 40.020.110.61140.20 40.020.18f(5,0.05)0.642f三、数据的误差分析三、数据的误差分析 (一)几种误差的基本概念(一)几种误差的基本概念 n 绝对误差 绝对误差观测值-真值。绝对误差反映了观测值偏离真值的大小。通常所说的误差一般是指绝对误差。相对误差是绝对误差和真值的比值
19、,常用百分数表示。算术平均误差它可以反映一组数据的误差大小 nxxxnii1标准误差也称均方根误差或标准偏差,它常用来表示观测数据的精密度,能明显地反映出较大的个别误差,标准差越小,说明数据精密度越好 nxxnii12例题例题:滴定的体积误差滴定的体积误差V绝对误差相对误差20.00 mL0.02 mL 0.1%2.00 mL0.02 mL 1.0%(二)误差的来源及分类(二)误差的来源及分类1.1.随机误差随机误差 随机误差是在一定条件下以不可预知的规随机误差是在一定条件下以不可预知的规律变化着的误差。这些偶然因素是操作者无法律变化着的误差。这些偶然因素是操作者无法严格控制的,故无法完全避免
20、随机误差。但它严格控制的,故无法完全避免随机误差。但它的出现一般具有统计规律,大多服从正态分布。的出现一般具有统计规律,大多服从正态分布。(二)误差的来源及分类(二)误差的来源及分类2.2.系统误差系统误差 系统误差是指由某个或某些不确定的因素系统误差是指由某个或某些不确定的因素所引起的误差。当条件一旦确定,系统误差就所引起的误差。当条件一旦确定,系统误差就是一个客观上的恒定值,它不能通过多次测量是一个客观上的恒定值,它不能通过多次测量取平均值的方法来消除,只能根据仪器的性能、取平均值的方法来消除,只能根据仪器的性能、环境条件或个人偏差等进行校正,使之降低。环境条件或个人偏差等进行校正,使之降
21、低。3.3.过失误差过失误差 过失误差是由于操作人员不仔细、操作不过失误差是由于操作人员不仔细、操作不正确等原因引起的,它是可以完全避免的。正确等原因引起的,它是可以完全避免的。n (三)误差分析(三)误差分析 n误差可能是由于随机误差或系统误差单独造成的,误差可能是由于随机误差或系统误差单独造成的,还可能是两者的叠加。误差分析中,常采用精密还可能是两者的叠加。误差分析中,常采用精密度、正确度和准确度来表示误差的性质。度、正确度和准确度来表示误差的性质。精密度反映了随机误差大小的程度,是指在相精密度反映了随机误差大小的程度,是指在相同条件下,对被测对象进行多次反复测量,测同条件下,对被测对象进
22、行多次反复测量,测量值之间的一致量值之间的一致(符合符合)程度。程度。正确度指测量值与其正确度指测量值与其“真值真值”的接近程度。的接近程度。对于一组数据来说,精密度高并不意味着正确对于一组数据来说,精密度高并不意味着正确度也高;反之,精密度不好,但当测量次数相当度也高;反之,精密度不好,但当测量次数相当多时,有时也会得到好的正确度。多时,有时也会得到好的正确度。准确度指被测对象测量值之间的一致程度以及与准确度指被测对象测量值之间的一致程度以及与其其“真值真值”的接近程度。的接近程度。1x2x3x4x准确度、正确度和精密度的关系准确度、正确度和精密度的关系四、数据的标准化处理四、数据的标准化处
23、理 n在大批的环境统计数据中,当数据的物理量不同、在大批的环境统计数据中,当数据的物理量不同、单位或量值差别较大时,常常会给下一步分析带单位或量值差别较大时,常常会给下一步分析带来困难,这时就有必要对数据进行标准化处理,来困难,这时就有必要对数据进行标准化处理,从而提高计算的精度。从而提高计算的精度。n环境管理与规划中,常采用下面的公式进行标准环境管理与规划中,常采用下面的公式进行标准化处理:化处理:n 第二节第二节 最优化分析方法最优化分析方法 一、线性规划一、线性规划 二、非线性规划二、非线性规划 三、动态规划三、动态规划 一、线性规划一、线性规划 在环境规划管理中,线性规划常常用来解决两
24、在环境规划管理中,线性规划常常用来解决两类优化问题:一是如何优化资源配置使产值最大类优化问题:一是如何优化资源配置使产值最大或利润最高,二是如何统筹安排以便消耗最少的或利润最高,二是如何统筹安排以便消耗最少的资源或排放最少的污染物。资源或排放最少的污染物。一般线性规划问题的求解,最常用的算法是单纯形法。一般线性规划问题的求解,最常用的算法是单纯形法。二、非线性规划二、非线性规划 在环境规划与管理中,某些问题的决策模型可能在环境规划与管理中,某些问题的决策模型可能会出现下面的情况:会出现下面的情况:目标函数非线性,约束条件目标函数非线性,约束条件为线性;为线性;目标函数为线性,约束条件非线性;目
25、标函数为线性,约束条件非线性;目标函数与约束条件均为非线性函数。上述情况均目标函数与约束条件均为非线性函数。上述情况均属于非线性规划问题,其数学模型的一般形式是:属于非线性规划问题,其数学模型的一般形式是:二、非线性规划二、非线性规划n数值求解非线性规划的算法大体分为两类:数值求解非线性规划的算法大体分为两类:n一是采用逐步线性逼近的思想,通过一系列非线一是采用逐步线性逼近的思想,通过一系列非线性函数线性化的过程,利用线性规划获得非线性性函数线性化的过程,利用线性规划获得非线性规划的近似最优解;规划的近似最优解;n二是采用直接搜索的思想,根据部分可行解或非二是采用直接搜索的思想,根据部分可行解
26、或非线性函数在局部范围内的某些特性,确定迭代程线性函数在局部范围内的某些特性,确定迭代程序,通过不断改进目标值的搜索计算,获得最优序,通过不断改进目标值的搜索计算,获得最优或满足需要的局部最优解。或满足需要的局部最优解。n 三、动态规划三、动态规划 n在环境规划管理中,经常遇到多阶段最优化问在环境规划管理中,经常遇到多阶段最优化问题,即各个阶段相互联系,任一阶段的决策选题,即各个阶段相互联系,任一阶段的决策选择不仅取决于前一阶段的决策结果,而且影响择不仅取决于前一阶段的决策结果,而且影响到下一阶段活动的决策,从而影响到整个决策到下一阶段活动的决策,从而影响到整个决策过程的优化问题。这类问题通常
27、采用动态规划过程的优化问题。这类问题通常采用动态规划方法求解方法求解。三、动态规划三、动态规划n基本原理为:作为多阶段决策问题,其整个过程基本原理为:作为多阶段决策问题,其整个过程的最优策略应具有这样的性质,即无论过去的状的最优策略应具有这样的性质,即无论过去的状态和决策如何,对前面的决策所形成的状态而言,态和决策如何,对前面的决策所形成的状态而言,其后一系列决策必须构成最优决策。其后一系列决策必须构成最优决策。n可以把多阶段决策问题分解成许多相互联系的小可以把多阶段决策问题分解成许多相互联系的小问题,从而把一个大的决策过程分解成一系列前问题,从而把一个大的决策过程分解成一系列前后有序的子决策
28、过程,分阶段实现决策的后有序的子决策过程,分阶段实现决策的“最优最优化化”,进而实现,进而实现“总体最优化总体最优化”方案。为使最后方案。为使最后决策方案获得最优决策效果,动态规划求解可用决策方案获得最优决策效果,动态规划求解可用下列递推关系式表示:下列递推关系式表示:三、动态规划三、动态规划第三节第三节 常用决策分析方法常用决策分析方法 n决策是指通过对解决问题备选方案的比较,从决策是指通过对解决问题备选方案的比较,从中选出最好的方案。中选出最好的方案。n n决策贯穿于环境管理与规划的各个方面,是管决策贯穿于环境管理与规划的各个方面,是管理与规划的核心理与规划的核心。决策技术决策技术n技术经
29、济分析中的决策,是指对多方案进行评技术经济分析中的决策,是指对多方案进行评价与择优,从而选定一个最满意的方案。价与择优,从而选定一个最满意的方案。n决策的分类决策的分类 n按决策的条件 n确定型 n非确定型 n风险型 n按决策的对象 n宏观 n微观按决策在企业组织中的地位分类 高层决策 中层决策 基层决策 决策树法决策树法 n决策树技术的含义决策树技术的含义 n是把方案的一系列因素按它们的相互关系用树是把方案的一系列因素按它们的相互关系用树状结构表示出来,再按一定程序进行优选和决状结构表示出来,再按一定程序进行优选和决策的技术方法。策的技术方法。n决策树技术的优点决策树技术的优点 n便于有次序
30、、有步骤、直观而又周密地考虑问题;便于有次序、有步骤、直观而又周密地考虑问题;n便于集体讨论和决策;便于集体讨论和决策;n便于处理复杂问题的决策。便于处理复杂问题的决策。n n 决策树图形决策树图形;表示决策点,从它引出的分枝称为策略方案分枝,分枝树反映表示决策点,从它引出的分枝称为策略方案分枝,分枝树反映可能的方案数;可能的方案数;表示策略方案节点,其引出的分枝称为概率分枝,分枝数目表示策略方案节点,其引出的分枝称为概率分枝,分枝数目反映可能的自然状态数;反映可能的自然状态数;表示事件节点,又称末梢。表示事件节点,又称末梢。决策树图形决策树图形n适用对象适用对象 n多阶段决策、前一阶段的决策
31、影响后续阶段多阶段决策、前一阶段的决策影响后续阶段的结构和决策的项目。的结构和决策的项目。n方法方法 n用决策树的形式列出决策问题的逻辑结构。用决策树的形式列出决策问题的逻辑结构。n从决策树的末端向决策点倒退,计算出不同从决策树的末端向决策点倒退,计算出不同决策方案下的期望值,将未占优的方案去掉,决策方案下的期望值,将未占优的方案去掉,直到得出初始的决策方案。直到得出初始的决策方案。n 运用决策树技术的步骤运用决策树技术的步骤(1 1)绘制决策树图;)绘制决策树图;(2 2)预计可能事件(可能出现的自然状态)及其发)预计可能事件(可能出现的自然状态)及其发生的概率;生的概率;(3 3)计算各策
32、略方案的损益期望值;)计算各策略方案的损益期望值;(4 4)比较各策略方案的损益期望值,进行择优决策。)比较各策略方案的损益期望值,进行择优决策。若决策目标是效益,应取期望值大的方案;若若决策目标是效益,应取期望值大的方案;若 决策目标是费用或损失,应取期望值小的方案。决策目标是费用或损失,应取期望值小的方案。决策树例题决策树例题(参考书目:环境管理学(参考书目:环境管理学-杨贤智编著杨贤智编著)有一石油化工企业,对一批废油渣进行综合利有一石油化工企业,对一批废油渣进行综合利用。它可以先作实验,然后决定是否综合利用;用。它可以先作实验,然后决定是否综合利用;也可以不作实验,只凭经验决定是否综合
33、利用。也可以不作实验,只凭经验决定是否综合利用。作实验的费用每次为作实验的费用每次为30003000元,综合利用费每次为元,综合利用费每次为1000010000元。若做出产品,可收入元。若做出产品,可收入4000040000元;作不出元;作不出产品,没有收入。各种不同情况下的产品成功概产品,没有收入。各种不同情况下的产品成功概率均已估计出来,都标在图率均已估计出来,都标在图1 1上。试问欲使收益期上。试问欲使收益期期望值为最大,企业应如何作出决策。期望值为最大,企业应如何作出决策。根据图中给出之数据求解。决策树采用逆顺根据图中给出之数据求解。决策树采用逆顺序计算法。序计算法。1 1计算事件点计
34、算事件点、的期望值的期望值 支 出 符 号 决 策(事 件)点;决 策 点不 试 验不 综 合 利 用00产 品 不 成 功 概 率 为 0.45 1000040000产 品 成 功 概 率 为 0.55综 合 利 用4400不 综 合 利 用产 品 不 成 功 概 率 为 0.9产 品 成 功 概 率 为 0.1概 率 为 0.4不 好 10000综 合 利 用3340000不 综 合 利 用00产 品 不 成 功 概 率 为 0.15 10000 3000概 率 为 0.640000产 品 成 功 概 率 为 0.85综 合 利 用好试 验2211图图1 决策树决策树 400000.850
35、0.1534000 400000.1000.904000 400000.5500.4522000 原决策树根据以上算出的期望值可简化为(图2a):2.在决策点2、3、4作出决策 2 按max(3400010000),024000,决定综合利用。3 按max(400010000),00,决定不综合利用。4 按max(2200010000),012000,决定综合利用。决策树继续简化为(图2b):ba12000综 合 利 用不 试 验0概 率 为 0.4不 好24000概 率 为 0.6好-3000试 验11不 试 验022000不 综 合 利 用-10000综 合 利 用40不 综 合 利 用4
36、000-10000综 合 利 用概 率 为 0.4不 好3不 综 合 利 用034000-10000综 合 利 用概 率 为 0.6好3000试 验图图2 决策树决策树3.计算状态点的期望值:240000.600.414400 4.在决策1作出决策。5.1得出整个问题的决策序列为:作实验、收入期望值为14400-3000=11400元。最后得出整个问题的决策序列为:不作实验、直接综合利用,收入期望值为12000元。二、决策矩阵二、决策矩阵 n决策矩阵又称为损益矩阵,它是利用损益的期望值进行决策矩阵又称为损益矩阵,它是利用损益的期望值进行决策,常用于有限条件下资源分配的最优化决策问题。决策,常用
37、于有限条件下资源分配的最优化决策问题。1 1,2 2,m m是满足决策目标要求的是满足决策目标要求的m m个可行的独立备选方案,所有方案构成的集个可行的独立备选方案,所有方案构成的集合合A=1A=1,2 2,m m 称为决策空间,决策者在此范围内选择最终方案;称为决策空间,决策者在此范围内选择最终方案;S S1 1,S S2 2,S S是每一种方案都可能遇到的外部条件,所有外部条件的集合是每一种方案都可能遇到的外部条件,所有外部条件的集合S=S=S S1 1,S S2 2,S Sn n 称为状态空间;称为状态空间;P P1 1,P P2 2,P Pn n是各种外部状态可能发生的概率,其是各种外
38、部状态可能发生的概率,其发生的概率总和为发生的概率总和为1 1,即;,即;决策矩阵的矩阵元素决策矩阵的矩阵元素V Vijij表示第表示第i i个方案在第个方案在第j j种种外部条件下所产生的收益或损失。外部条件下所产生的收益或损失。njjP11三、多目标决策方法三、多目标决策方法 n在在环境管理与规划问题中环境管理与规划问题中,同时存在着多个目标,同时存在着多个目标,每个目标都要求达到其最优值,并且各目标之每个目标都要求达到其最优值,并且各目标之间往往存在着冲突和矛盾,这类问题就是多目间往往存在着冲突和矛盾,这类问题就是多目标决策问题。解决这类决策问题的方法就是多标决策问题。解决这类决策问题的
39、方法就是多目标决策方法。目标决策方法。三、多目标决策方法三、多目标决策方法 第四节第四节 环境数学模型环境数学模型 一、数学模型概述一、数学模型概述 二、模型的建立二、模型的建立 三、模型参数的估算方法三、模型参数的估算方法 四、模型的检验四、模型的检验一、数学模型概述一、数学模型概述 n环境数学模型是应用数学语言和方法来描述环境污环境数学模型是应用数学语言和方法来描述环境污染过程中的物理、化学、生物化学、生物生态以及染过程中的物理、化学、生物化学、生物生态以及社会等方面的内在规律和相互关系的数学方程。社会等方面的内在规律和相互关系的数学方程。n它是建立在对环境系统进行反复的观察研究,通过它是
40、建立在对环境系统进行反复的观察研究,通过实验或现场监测,取得大量的有关信息和数据,进实验或现场监测,取得大量的有关信息和数据,进而对所研究的系统行为动态、过程本质和变化规律而对所研究的系统行为动态、过程本质和变化规律有了较深刻认识的基础上,经过简化和数学演绎而有了较深刻认识的基础上,经过简化和数学演绎而得出的一些数学表达式,这些表达式描述了环境系得出的一些数学表达式,这些表达式描述了环境系统中各变量及其参数间的关系。统中各变量及其参数间的关系。一、数学模型概述一、数学模型概述n环境数学模型主要应用于环境规划与管理、环境环境数学模型主要应用于环境规划与管理、环境影响评价和环境质量预测几个方面,其
41、类型主要影响评价和环境质量预测几个方面,其类型主要包括大气扩散模型、水文与水动力模型、水质模包括大气扩散模型、水文与水动力模型、水质模型、土壤侵蚀模型、沉积物迁移模型和物种栖息型、土壤侵蚀模型、沉积物迁移模型和物种栖息地模型等,每一类模型又可按模型的空间维数、地模型等,每一类模型又可按模型的空间维数、时间相关性、数学方程特征等来进行分类时间相关性、数学方程特征等来进行分类 .规划模型马氏链模型图论模型几何模型初等数学模型按数学方法分类控制模型决策模型优化模型预报模型分析模型描述模型按建模目的分类灰箱模型黑箱模型白箱模型分类按对模型结构了解程度不等式模型函数方程模型微分方程模型代数模型按模型所属
42、数学分支非线性模型线性模型按模型中变量阶次确定性模型随机模型按模型是否含随机变量按数学方程特征分类稳态模型动态模型按时间相关性分类三维模型二维模型一维模型零维模型按空间维数分类二、二、模型建立模型建立建立数学模型的步骤建立数学模型的步骤 (一一)建模准备建模准备 n了解问题的实际背景,明确建模目的,搜集必需了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。的各种信息,尽量弄清对象的特征。(二二)模型假设模型假设 n根据对象的特征和建模目的,对问题进行必要的、根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至合理的简化,用精确的语言作出
43、假设,是建模至关重要的一步,建模者能充分发挥想象力、洞察关重要的一步,建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。法简单,应尽量使问题线性化、均匀化。二、二、模型建立模型建立建立模型的方法建立模型的方法 1 1、图解法、图解法 n采用点和线组成的用以描述系统的图形称为图模型,采用点和线组成的用以描述系统的图形称为图模型,可用于描述自然界和人类社会中大量事物和实物之可用于描述自然界和人类社会中大量事物和实物之间的关系。间的关系。n图模型形象、直观,对决策者了解系统结构和功能图模型形象、直观,对
44、决策者了解系统结构和功能之间的关系很有帮助。但图解建模法作为一种描述之间的关系很有帮助。但图解建模法作为一种描述性方法,往往精确度较差,而且受人的视觉影响而性方法,往往精确度较差,而且受人的视觉影响而局限于三维空间中,因此它通常作为建立系统方程局限于三维空间中,因此它通常作为建立系统方程式模型的辅助分析工具来用。式模型的辅助分析工具来用。2 2、质量平衡法、质量平衡法 n根据质量平衡原则建立微分方程是最常用的建立根据质量平衡原则建立微分方程是最常用的建立白箱模型的方法。白箱模型的方法。n应用质量平衡方法必须知道物质流的方向和通量,应用质量平衡方法必须知道物质流的方向和通量,污染物质反应的方式和
45、速度,以及各种污染物之污染物质反应的方式和速度,以及各种污染物之间的相关关系和关联作用。间的相关关系和关联作用。n环境数学模型中很多都是在质量平衡的基础上建环境数学模型中很多都是在质量平衡的基础上建立的。值得注意的是,几乎每一个利用质量平衡立的。值得注意的是,几乎每一个利用质量平衡原则建立的模型中都包含了一个或多个待定参数,原则建立的模型中都包含了一个或多个待定参数,它们一般很难由过程的机理确定,且数值又随时它们一般很难由过程的机理确定,且数值又随时间、空间变化,因此需要借助于大量的观测数据间、空间变化,因此需要借助于大量的观测数据最终确定参数。最终确定参数。n 3 3、概率统计法、概率统计法
46、 n回归分析法建立在对客观事物进行大量试验和观回归分析法建立在对客观事物进行大量试验和观察的基础上,是一种用来寻找隐藏在某些现象中察的基础上,是一种用来寻找隐藏在某些现象中的规律性的数理统计方法。的规律性的数理统计方法。n回归分析法就是通过分析因素之间的因果关系和回归分析法就是通过分析因素之间的因果关系和影响程度进行预测,用过去和现在的环境监测数影响程度进行预测,用过去和现在的环境监测数据确定函数关系式,按最小二乘法原则确定函数据确定函数关系式,按最小二乘法原则确定函数式中的参数值,进而建立回归预测模型,用于预式中的参数值,进而建立回归预测模型,用于预测环境要素特征发展变化的规律。测环境要素特
47、征发展变化的规律。3 3、概率统计法、概率统计法n根据变量之间函数形式的不同,回归分析分为根据变量之间函数形式的不同,回归分析分为线形回归和非线性回归;根据自变量个数的多线形回归和非线性回归;根据自变量个数的多少,可分为一元回归和多元回归。少,可分为一元回归和多元回归。n根据数据处理方法的不同,时间序列预测方法根据数据处理方法的不同,时间序列预测方法主要分为移动平均法、加权滑动平均法和指数主要分为移动平均法、加权滑动平均法和指数平均法。平均法。n n 三、模型参数的估值方法三、模型参数的估值方法 由于环境系统中的模型基本上都是灰箱模型,由于环境系统中的模型基本上都是灰箱模型,其中至少存在着一个
48、待定参数,因此参数的其中至少存在着一个待定参数,因此参数的估计是建立环境数学模型非常重要的一项工估计是建立环境数学模型非常重要的一项工作。下面介绍几种主要的估值方法。作。下面介绍几种主要的估值方法。n (一)图解法(一)图解法 凡是给定的公式或数据可以直接描述成一条直线,或经过一定处理后可以转化为直线时,常常采用图解法估计参数。作图时,将自变量x和因变量y标注在直角坐标系中,确定每一个数据点位,把所有的点位连接起来,形成一条直线,其数学表达式为:Y=b+ax(4-21)式中:a是直线的斜率,b是直线在y轴上的截距。axby(二)经验公式法(二)经验公式法 根据长时期的实际经验,人们提出了许多经
49、验公式来估计数学模型中的相关参数。应注意的是,使用经验公式要求该系统条件与建立经验公式的条件一致或相近,否则就会出现很大偏差。(三)线性回归法(三)线性回归法 此法适用于自变量xi(i=1,2,n)与因变量y呈一次线性关系的情况。线性回归分析有两个基本假设:一是所有的自变量的值xij(j=1,2,m)均不存在误差,因变量的值含有测量误差;二是与各测量值拟合得最好的线性方程:y=a1x1+a2x2+aixi+anxn+b 是能使各点到直线的竖向偏差的平方和 最小的直线。根据极值存在的条件,分别对Z做ai、b的一阶偏导,使:由此可以求得偏差平方和Z最小时的参数值ai(i=1,2,n)、b。2122
50、1112)(mjnjnijijjjmjjbxaxaxaxaydZ0bZaZi四、模型的检验四、模型的检验 n数学模型只能近似地反映实际问题中的关系和规数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的。因此,际问题,数学解答再正确也是没有用的。因此,在得出数学解答之后还要让所得的结论接受实际在得出数学解答之后还要让所得的结论接受实际的检验,检验其是否合理和是否可行等。的检验,检验其是否合理和是否可行等。