RO水处理技术课件.ppt

上传人(卖家):晟晟文业 文档编号:4091937 上传时间:2022-11-10 格式:PPT 页数:145 大小:3.95MB
下载 相关 举报
RO水处理技术课件.ppt_第1页
第1页 / 共145页
RO水处理技术课件.ppt_第2页
第2页 / 共145页
RO水处理技术课件.ppt_第3页
第3页 / 共145页
RO水处理技术课件.ppt_第4页
第4页 / 共145页
RO水处理技术课件.ppt_第5页
第5页 / 共145页
点击查看更多>>
资源描述

1、不易透过气体易透过气体浓度差气体、气体与蒸汽分离气体分离液体、无机盐、乙醇溶液蒸汽压力差、浓度差溶液中的低分子及溶剂间的分离渗透气化无机、有机离子离子电位差脱除溶液中的离子电 渗 析无机盐、糖类、氨基酸、BOD、COD等离子、低分子物、酸、碱浓度差脱除溶液中的盐类及低分子物透 析无机盐、糖类、氨基酸、BOD、COD等水、溶剂压力差脱除溶液中的盐类及低分子物反渗透和纳滤蛋白质、各类酶、细菌、病毒、乳胶、微粒子溶剂、离子和小分子压力差脱除溶液中的胶体、各类大分子超 滤悬浮物、细菌类、微粒子水、溶剂和溶解物压力差多孔膜、溶液的微滤、脱微粒子微 滤被截留物质透过物质分离驱动力膜的功能膜的种类人类发现渗

2、透现象至今已有200多年的历史,通常认为1748年Abbe Nollet发表的通过动物膜的试验为始点,之后,Vant Hoff建立了稀浓液的完整理论。J.W.Gibbs提供了认识渗透压及它与其他热力学性能关系的理论。1953年,C.E.Reid建议美国内务部,把反渗透的研究纳入国家计划。1956年,S.T.Yuster提出从膜表面撇出所吸附的纯水作为脱盐过程的可能性。1960年,S.Loeb和S.Sourirajan制得了世界上第一张高脱盐率、高通量的不对称乙酸纤维素反渗透膜。1970年,美国Du Pont公司推出由芳香族聚酰胺中空纤维制成的渗透器,与此同时Dow和东洋纺公司先后开发出三乙酸纤

3、维素中空纤维反渗透器,UOP公司成功推出卷式反渗透元件。1980年,Filmtec公司推出性能优异、实用的FT-30复合膜,80年代末高脱盐率的全芳香聚酰胺复合膜工业化。90年代中,超低压高脱盐全芳香聚酰胺复合膜开发进入市场。只透过溶剂而不透过溶质的膜称只透过溶剂而不透过溶质的膜称为理想半透膜。当把溶剂和溶液为理想半透膜。当把溶剂和溶液(或两或两种不同浓度的溶液种不同浓度的溶液)分置于此膜的两侧分置于此膜的两侧时,溶剂将自发地穿过半透膜向溶液时,溶剂将自发地穿过半透膜向溶液(或从低浓度向高浓度溶液或从低浓度向高浓度溶液)侧流动,侧流动,这种自然现象叫做渗透这种自然现象叫做渗透(Osmosis)

4、Osmosis),如如果上述过程中溶剂是纯水,溶质是盐果上述过程中溶剂是纯水,溶质是盐份,当用理想半透膜将它们分离开时,份,当用理想半透膜将它们分离开时,纯水侧的水会自发地通过半透膜流入盐纯水侧的水会自发地通过半透膜流入盐水侧,此过程如左图所示:水侧,此过程如左图所示:纯水侧的水流入盐水侧,纯水侧的水流入盐水侧,浓水侧的液位上升,当上升浓水侧的液位上升,当上升到一定高度后,水通过膜的到一定高度后,水通过膜的净流量等于零,此时该过程净流量等于零,此时该过程达到平衡,与该液位高度对达到平衡,与该液位高度对应的压力称为渗透压应的压力称为渗透压(Osmotic pressure),),该过程如左图所示

5、:该过程如左图所示:一般来说渗透压的大小,取决于溶液的种类、一般来说渗透压的大小,取决于溶液的种类、浓度和温度,而与半透膜本身无关,通常可用下浓度和温度,而与半透膜本身无关,通常可用下式来计算渗透压:式来计算渗透压:=CRT渗透压,大气压渗透压,大气压C浓度差,摩尔浓度差,摩尔/升升R气体常数,等于气体常数,等于0.08206升升*大气压大气压/摩尔摩尔*oKT绝对温度绝对温度 OK上式是应用热力学公式推导出来的,因此只对稀溶液才是准上式是应用热力学公式推导出来的,因此只对稀溶液才是准确的。确的。C为水中离子浓度,若为非电解质则为分子的浓度。为水中离子浓度,若为非电解质则为分子的浓度。当在膜的

6、盐水侧施加当在膜的盐水侧施加一个大于渗透压的压力一个大于渗透压的压力时,水的流向就会逆转,时,水的流向就会逆转,此时盐水中的水将流入此时盐水中的水将流入纯水侧,这种现象叫反纯水侧,这种现象叫反渗透(渗透(Reverse Osmosis,简称简称RO),),该过程如左该过程如左图所示:图所示:通常所说的膜性能是指膜的化学稳定通常所说的膜性能是指膜的化学稳定性和膜的分离透过特性。性和膜的分离透过特性。l膜的物化稳定性的主要指标有:膜材料、膜的物化稳定性的主要指标有:膜材料、膜允许使用的最高压力、温度范围、适膜允许使用的最高压力、温度范围、适用的用的PH值范围以及对有机溶剂等化学药值范围以及对有机溶

7、剂等化学药品的抵抗性,有时尚需说明对某些物质,品的抵抗性,有时尚需说明对某些物质,如水中游离氯或氧化性物质的最高允许如水中游离氯或氧化性物质的最高允许浓度。浓度。l膜的分离透过性的主要指标是:脱盐率、膜的分离透过性的主要指标是:脱盐率、产水率、流量衰减系数。产水率、流量衰减系数。Qw=Kw(P+)A/T式中:Qw产水量Kw系数P膜两侧的压差渗透压 A 膜面积T 膜厚度 Kw与膜性质及水温有关,Kw越大,说明膜的透水性能越好。对于一张给定的膜,我们可以推导出产水量及盐透过量的计算公式对于一张给定的膜,我们可以推导出产水量及盐透过量的计算公式:Qs=Ks*C*A/T式中:Qs盐透过量 Ks系数c膜

8、两侧盐浓度差A 膜面积T 膜厚度 Ks与膜性质、盐的种类及水温有关,Ks越大,说明膜的脱盐性能越好。从以上两式可以看出,对膜来说从以上两式可以看出,对膜来说Kw大大Ks小则膜质量较好。相小则膜质量较好。相同面积和厚度的产水量与净驱动压力成正比,盐透过量只与膜同面积和厚度的产水量与净驱动压力成正比,盐透过量只与膜两侧溶液浓度成正比,而与压力无关。两侧溶液浓度成正比,而与压力无关。该模型假设膜是完美无缺的理想膜,高压侧浓溶液中各组分先溶于膜中,再以分子扩散方式通过膜,最后在低压侧进入稀溶液,任意组分(水或盐)的通量主要取决于化学位梯度,水和盐传质的推动力有两部分:浓度梯度和压力梯度。该模型基本上可

9、定量地描述水和盐透过膜的传递,但推导中的一些假设并不符合真实情况,另外传递过程中水、盐和膜之间相互作用也没有考虑。溶液界面张力和溶质(活度)在界面的吸附Gibbs方程,预示了在界面处存在着急剧的浓度梯度,也就是说在膜的表面形成水分子薄层,在外力的作用下,优先通过反渗透膜。膜的表面很致密,其上有大量的活化点,键合一定数目的结合水,这种水已失去溶剂化能力,盐水中的盐不溶于其中。进料中的水分子在压力下可与膜上的活化点形成氢键而缔合,使该活化点上其他结合水解缔下来,该解缔的结合水又与下面的活化点缔合,使该点原有的结合水解缔下来,此过程不断地从膜面向下层进行,就是以这种顺序型扩散,水分子从膜面进入膜内,

10、最后从底层解脱下来成为产品水。而盐是通过高分子链间空穴,以空穴型扩散,从膜面逐渐到产品水中的,但该模型缺乏更多的关于传质的定量描述。膜为固定负电荷型,据电中性原理及膜和溶液中离子化学位平衡,一般认为借助于排斥同离子的能力,荷电膜可用于脱盐,一般只有稀溶液,在压力下通过荷电膜时,有较明显的脱盐作用,随着浓度的增加,脱盐率迅速下降。二价同离子的脱除比单价同离子好,单价同离子的脱除比二价反离子的好。该理论以Donnan平衡为基础来说明荷电膜的脱盐,但Donnan平衡是平衡状态,而对于在压力下透过荷电膜的传质,还不能从膜、进料及传质过程等多方面来定量描述。除上述模型,许多学者还提出不小另外的模型,如脱

11、盐中心模型,表面力-孔流模型,有机溶质脱盐机理等。反渗透膜的种类多,分类方法也很多,反渗透膜的种类多,分类方法也很多,但大体上可按膜材料的化学组成和膜材料但大体上可按膜材料的化学组成和膜材料的物理结构外型结构及来区分。的物理结构外型结构及来区分。l按膜材料的化学组成大致可分为:按膜材料的化学组成大致可分为:醋酸纤维膜、芳香聚酰胺膜等醋酸纤维膜、芳香聚酰胺膜等l按膜材料的物理结构大致可分为:按膜材料的物理结构大致可分为:非对称膜、复合膜等非对称膜、复合膜等l按外型结构大致可分为:按外型结构大致可分为:管式、平板式、中空纤维式及涡管式管式、平板式、中空纤维式及涡管式 在反渗透技术刚起步时,主要采用

12、管式和平在反渗透技术刚起步时,主要采用管式和平板式膜元件。但这两种膜元件初始投资高、膜的板式膜元件。但这两种膜元件初始投资高、膜的填充密度低,因此常用于高污染给水处理。填充密度低,因此常用于高污染给水处理。卷式膜元件是把两层膜背对背粘结成膜袋,卷式膜元件是把两层膜背对背粘结成膜袋,之后将多个膜袋卷绕到多孔产水管上形成的。该之后将多个膜袋卷绕到多孔产水管上形成的。该膜元件组成的系统投资低、耗电省,它是工业系膜元件组成的系统投资低、耗电省,它是工业系统中应用普遍的膜元件。其研制发展速度快,单统中应用普遍的膜元件。其研制发展速度快,单个膜元件的脱盐率高达个膜元件的脱盐率高达99.7%。中空纤维膜元件

13、组成的反渗透系统有填充密中空纤维膜元件组成的反渗透系统有填充密度高的特点,因而要求其对给水进行更严格的预度高的特点,因而要求其对给水进行更严格的预处理,以减少污堵的可能性。处理,以减少污堵的可能性。系统费用系统费用:管式、平板式管式、平板式 中空纤维式、涡卷式中空纤维式、涡卷式设计灵活性设计灵活性:涡卷式涡卷式中空纤维式中空纤维式平板式平板式管管清洗方便性清洗方便性:平板式平板式管式管式涡卷式涡卷式中空纤维式中空纤维式系统占地面积系统占地面积:管式管式平板式平板式涡卷式涡卷式中空纤维式中空纤维式污堵可能性污堵可能性:中空纤维式中空纤维式涡卷式涡卷式平板式平板式管式管式耗耗 能能:管式管式平板式

14、平板式中空纤维式中空纤维式涡卷式涡卷式 涡卷式膜元件是美国涡卷式膜元件是美国UOP公司受美国内务部盐水局(公司受美国内务部盐水局(OSW)委委托于托于1964年首先开发出来的一种新型膜元件。涡卷式膜元件中所采年首先开发出来的一种新型膜元件。涡卷式膜元件中所采用的膜为平面膜,为了使产品水在膜袋中流动,在信封状的半透膜用的膜为平面膜,为了使产品水在膜袋中流动,在信封状的半透膜之内夹有产品水通道织物层。之内夹有产品水通道织物层。RO系统运行时,原水中一部分水盐与膜垂直的方向通过膜,此系统运行时,原水中一部分水盐与膜垂直的方向通过膜,此时盐类和胶体物质将在膜表面浓缩,剩余一部分原水沿与膜平行的时盐类和

15、胶体物质将在膜表面浓缩,剩余一部分原水沿与膜平行的方向将浓缩的物质带走。膜元件的水通量越大、回收率越高,则其方向将浓缩的物质带走。膜元件的水通量越大、回收率越高,则其在膜表面浓缩程度越高。膜表面的物质浓度与主体水流中物质浓度在膜表面浓缩程度越高。膜表面的物质浓度与主体水流中物质浓度不同,这种情况称为浓差极化。增大等不良后果,因此在涡卷式膜不同,这种情况称为浓差极化。增大等不良后果,因此在涡卷式膜元件中装有给水通道隔网,以增加给水元件中装有给水通道隔网,以增加给水浓缩通道的紊乱程度,进浓缩通道的紊乱程度,进而减少浓差极化的发生。而减少浓差极化的发生。涡卷式膜元件的主要规格参数有:外型尺寸、有效膜

16、面积、产水涡卷式膜元件的主要规格参数有:外型尺寸、有效膜面积、产水量、脱盐率、操作及最高操作压力、最高使用温度和进水水质要求。量、脱盐率、操作及最高操作压力、最高使用温度和进水水质要求。从化学上讲,醋酸纤维素膜从化学上讲,醋酸纤维素膜(Cellulose Acetate简称简称CA)是一种羟基聚合物,它一般是用纤维素经酯化生成三醋酸是一种羟基聚合物,它一般是用纤维素经酯化生成三醋酸纤维,再经过二次水解成一、二、三醋酸纤维的混和物。纤维,再经过二次水解成一、二、三醋酸纤维的混和物。作为膜材料的醋酸纤维素中的乙酰基含量越高,脱盐性能作为膜材料的醋酸纤维素中的乙酰基含量越高,脱盐性能越好,但产水量越

17、小。为了平衡脱盐性能和透水性能,一越好,但产水量越小。为了平衡脱盐性能和透水性能,一般选择乙酰基含量为般选择乙酰基含量为37.540.1%的醋酸纤维。的醋酸纤维。醋酸纤维是一种酯类,会发生水解,水解的结果将降醋酸纤维是一种酯类,会发生水解,水解的结果将降低乙酰基的含量,使膜的性能受到损害,同时膜也更易受低乙酰基的含量,使膜的性能受到损害,同时膜也更易受到生物的侵袭。到生物的侵袭。醋酸纤维素膜的水解出和温度有关以外,还于醋酸纤维素膜的水解出和温度有关以外,还于PH值有值有关。为增加膜的使用寿命,一般控制原水的关。为增加膜的使用寿命,一般控制原水的PH在在5-6之间。之间。从结构来讲,复合膜从结构

18、来讲,复合膜(Thin Film Composite简简TFC)是若干层薄皮的复是若干层薄皮的复合体,此膜的最大特点是合体,此膜的最大特点是抗压实性较高、透水率较抗压实性较高、透水率较大和盐透率较小。大和盐透率较小。l复合膜的化学稳定性较好,而醋酸纤维膜将会发生水解。复合膜的化学稳定性较好,而醋酸纤维膜将会发生水解。l复合膜的生物稳定性好,复合膜不受生物侵袭,而醋酸纤维膜易复合膜的生物稳定性好,复合膜不受生物侵袭,而醋酸纤维膜易受微生物的侵袭。受微生物的侵袭。l复合膜的输性能好。即复合膜的输性能好。即Kw大而大而KS小。小。l复合膜在运行中不会被压紧,因此产水量不随使用时间改变;而复合膜在运行

19、中不会被压紧,因此产水量不随使用时间改变;而醋酸纤维膜在运行中会被压紧,因而产水量下降。醋酸纤维膜在运行中会被压紧,因而产水量下降。l复合膜的脱盐率不随时间而改变;而醋酸纤维膜由于会发生水解,复合膜的脱盐率不随时间而改变;而醋酸纤维膜由于会发生水解,脱盐率将会不断下降。脱盐率将会不断下降。l复合膜由于复合膜由于Kw大,其工作压力低,反渗透给水泵用电量是醋酸大,其工作压力低,反渗透给水泵用电量是醋酸纤维膜给水泵用电量的一半。纤维膜给水泵用电量的一半。l醋酸纤维膜的使用寿命一般仅为醋酸纤维膜的使用寿命一般仅为3年,而复合膜年,而复合膜 的使用寿命大于的使用寿命大于三年。三年。l复合膜的缺点为抗氯性

20、较差,价格较贵。复合膜的缺点为抗氯性较差,价格较贵。反渗透膜元件构造反渗透膜元件构造集水管膜浓水膜透过水原水流道网原水透过水流道网原水膜元件的结构示意图最高使用温度:113F(45)最大给水浊度:4.0ppm允许游离氯:0.1ppmPH范围:连续运行:3-10 短时运行:2-11最大给水流量:75GPM(17.0m3/h)给水最大SDI值:4.0单个膜元件回收率:15%l醋酸纤维膜要求给水中含有残余氯,可防止细菌滋生,但含氯量过高会破坏膜,最大允许连续余氯的含量为1毫克/升。l复合膜抗氯性差,一般不允许余氯,采用加氯杀菌后,需加亚硫酸氢钠或经活性炭过滤消除余氯。l使用压力硫酸氢钠除余氯的反应如

21、下:Na2S2O5+H2ONaHSO3 NaHSO3+HCLOHCL+NaHSO4 l理论上1.34公斤的Na2S2O5可以去除1公斤余氯,但在有溶解氧的情况下,对苦咸水去除1公斤余氯需投加3公斤Na2S2O5。Na2S2O5在干爽条件下储存,有效期为4-6个月,溶液的有效期与浓度变化有关。溶液浓度(重量%)2%10%20%30%最长有效期 3天 1星期 1月 6月l使用活性炭过滤清除余氯的反应如下:C+2CL2+2H2O4HCL+CO2 l当RO给水在进行氯化及脱氯工程中,或在水中溶解氧含量高于5毫克/升时水中的2价铁离子转化为3价铁离子,生成不溶于水的胶体物质,对反渗透造成污染。即使水中S

22、DI值小于5、铁离子含量小于0.1毫克/升,仍可能发生铁的污染问题。l铁的氧化速度取决于铁含量、水中的溶解氧浓度和PH值,其关系如下:氧含量(毫克/升)PH 允许铁含量(毫克/升)0.5 7.0 0.05l降低RO给水中铁的含量可以采用曝气-锰砂过滤的方法完成。l浓水中不允许析出SiO2,当SiO2过饱和则可能聚合而形成不溶解的胶体硅或有机硅胶而引起结垢。l纯水25时,无定形硅的溶解度约为100毫克/升(以SiO2计),溶解度随温度呈直线变化,在0时为0,到40时为160毫克/升。在中性溶液中,溶解的只有硅酸;在碱性溶液中,无定形硅的溶解度较大。溶液中除铝之外,其余各种离子均不会影响二氧化硅的

23、溶解度。注:许多运行的RO装置浓水中的二氧化硅超过文献中的极限浓度,但并未析出二氧化硅;确定是否需要控制二氧化硅结垢,可根据文献数据中的SiO2与浓水流中的SiO2进行比较,如果浓水中的数值小于文献规定数值则不会结垢。控制系统回收率是主要的防止结垢的方法,靠降低系统回收率使浓水中的SiO2降低。采用石灰软化,可降低给水中50%的SiO2。温度控制:因无定形SiO2的溶解度取决于温度。发现可能出现了硅垢,必须立即清洗,硅垢一旦形成急难去除。不允许大于5的颗粒进入高压泵及反渗透器,这点必须确保,以免破坏设备。一般在高压泵前安装5过滤器,再微过滤器前后安装压力表,当压力表超过一定数值后,更换氯芯,通

24、常情况下更换周期为1-3个月,若使用时间小于1个月,则需改善预处理系统,不允许使用带反洗的微过滤器。对于不同的原水水源,由于选用的通量不同,要求的SDI值也不一样,一般要求SDI小于5(越小越好);浊度应小于0.2NTU(最大允许浊度为1 NTU)。l水中的有机物对RO膜的影响最为复杂,有些有机物对膜的影响不大,而另一些则可能造成膜的有机物污染。一般来说当水中的TOC含量超过3毫克/升时,即应考虑进行去除,对于地表水应尽量在絮凝剂澄清的过程中去除有机物,还可以采用活性炭过滤进一步降低有机物含量。水中不允许含有油和脂,当油或脂超过0.1毫克/升时,就应采用凝聚或使用活性炭过滤器进行去除。由于细菌

25、会以醋酸纤维为食物,因此醋酸膜易受细菌的侵袭,对原水必须彻底杀菌。对于复合膜,虽然不受细菌的侵袭但细菌粘膜会造成膜的污堵,一般可采用加氯杀菌,加氯量要根据需氯量实验加以确定。氯加入水中发生以下反应:CL2+H2O=HCLO+H+CL-HCLO=H+CLO-HCLO为次氯酸,CLO-为次氯酸根,由于H+能被水中的碱度中和,最后水中只剩下HCLO和CLO-,两者在水中所占的百分数主要取决于PH值和水温。当PH小于7时,水中的HCLO占75%,CLO-占25%,温度降低时HCLO所占的比例将增大,在0C时HCLO增加到83%,CLO-减到17%。对于氯气的杀菌机理有不同说法,通常的解释是生成的次氯酸

26、产生杀菌作用。HCLO是个中性分子,可以扩散到带负电的细菌表面,并穿过细菌的细胞进入细菌内部,HCLO分子进入细胞后由于CL分子的氧化作用破坏了细菌的某种酶系统(酶是一种蛋白质成分的催化剂,细菌的养分要经过它的作用后才能被吸收),最后导致细菌的死亡,而次氯酸根CLO-虽然包括一个氯分子,但它带负电,不能靠近带负电的细菌,所以也不能穿过细菌的细胞膜进入细菌内部,因此很难起杀菌作用。从上式中可以看出,加入水中的氯气只有1/2变成HCLO的成分;另外的1/2在水中产生CL-,不起杀菌作用。采用NaCLO时:NaCLO+H2O=HCLO+Na+OH-,比较可以看出一个分子的NaCLO作用相当于一个分子

27、的CL2。l必须防止CaCO3、CaSO4、SrSO4、BaSO4和CaF2垢。l膜结垢是由于给水中的微量盐在给水转化为浓水时超过了溶度积而沉淀到膜上在苦咸水中,CaCO3、CaSO4,其他盐类SrSO4、BaSO4和CaF2需要计算来确定浓水中是否超过溶解度极限。如果微溶盐超过溶解极限,需要采取以下方法:l降低系统回收率,避免超过溶度积。l采取离子交换软化去除钙离子。l加酸去除碳酸或重碳酸离子。l加阻垢剂。75(17.0)5:1单支膜元件上浓缩水与透过水量的最大比例10psi(0.7kgf/cm2)单支膜元件最高压力损失 0.1ppm最高进水自由氯浓度1.0 NTU进水最高浊度 5进水最高

28、SDI(15分钟)16(3.6)最高进水流量 GPM(m3/h)600(4.16)最高操作压力 psi(MPa)3.0 10.0进水PH范围45最高进水温度 ()使用条件6.5 7.0测试液PH15单支膜元件水回收率 (%)25测试液温度 ()225(1.55)操作压力 psi(MPa)1500ppm NaCl溶液(运行30分钟后测试的数据)测试溶液测试条件11000(41.6)6000(22.7)11000(41.6)10000(37.8)2250(8.5)透过水量 GPD(m3/d)99.6平均99.799.699.2(平均99.6)99.2最低脱盐率 (%)性能4004004003658

29、5有效膜面积 (ft2)16.44.1湿润态重量 (kg)201.9/1016.099.0/1016.0外径/长度 (mm)规格CPA-ULTRAPURECPA4CPA3CPA2CPA2-4040型型 号号确实需要加强预处理1个月超过1次可能需要加强预处理13个月适度3个月或更长预处理是否合理适度清洗频率100SiO26000BaSO4800SrSO4230CaSO4饱 和 值%盐 份1.8用有机阻垢剂时的LSI及SDSI0.5用六偏磷酸钠做阻垢剂时的LSI及SDSI-0.2不加阻垢剂时的LSI及SDSILSI 值 *条 件*:接取500ml水样所需时间大约为接取100ml水所需时间的5倍。如

30、果接取500ml所需时间远大于5倍,则在计算SDI值时,应采用接取100ml所用的时间。*:为了精确测量SDI值,P30应不超过75%,如果P30超过75%应重新试验并在较短时间内获取Tf值。l无论何种膜元件都必须装入压力容器以方便使用,由于各种膜元件的尺寸大小不一样,所以压力容器的尺寸也就不一样。常见的压力容器直径为:2.5英寸、4英寸、8英寸等种类。各种压力容器的构造接近。l压力容器中可以安装一个或多个膜元件。以Codeline公司的压力容器为例,每个压力容器中可安装1-7各膜元件。在膜元件之间采用连接件连接,膜元件与压力容器端口采用支撑板、密封板、锁环等支撑密封。l在实际运行过程中,给水

31、从压力容器一端的给水管路进入膜元件。一部分给水穿过膜表面而形成低含盐量的产品水;剩余部分水继续沿给水管路向前流动进入下个膜元件,这部分水含盐量较高。以上两部分水分别称为产品水和浓水,分别用产品水管路和浓水管路引出压力容器。l给水压力容器中的每个膜元件上均产生压力降,如不采取措施,压力降将会使膜卷伸出而对膜元件造成损害。为此在每个膜元件的一端有一个防膜卷伸出的装置;另外设计给水量不应超过产品规定的参数,运行时单个膜元件的压力降不允许超过规定值。l膜元件之间采用的是内连接件连接,为防止在连接处浓水泄露,在膜元件之间有浓水密封。l膜元件的安装l检查容器内部有无划伤或不完善的地方。腐蚀产物或外部杂质(

32、包括润滑油过量)应该被清理出去。l用清水冲洗容器以去除所有尘土和颗粒。l检查膜元件表面有无缺陷,如果有的话将会擦伤容器;特别是要注意防止膜卷缩伸出装置的端部,如果发现任何不能处理的缺陷,请联系生产厂来处理。l用约50%的甘油-水混合物来润滑容器内部。可用合适尺寸的拖把沾取混合物来润滑,以减少容器内部被擦伤。l把第一个膜元件装入压力容器的进水端,元件的端部留几寸在容器外,以便连接下一个膜元件。l用少量润滑剂润滑连接器的O型环。l在连接器连上第一个膜元件。l把要装入的下一个膜元件与前一个对齐,并把它装与前一个膜元件连接好的连接器上。注意:在最后一个膜元件安装完毕后,所有膜元件都必须再向前推到位,不

33、要把膜元件向前推得太多。l将适配器安装到压力容器的两端的膜元件产品水管上。l在水流方向的下游安装推力环。l在完成A步骤中的任务后开始本步骤。l清理压力容器内侧的腐蚀产物或外来杂物。l检查压力容器内部有无擦伤或损伤,泄漏的容器必需更换。l润滑管壳内从斜面1/2处到距斜面大约1/2”的范围。l对齐管端组件和压力容器本身的标识符号,在管端组件插入压力容器后不要旋转它。l握住管端组件使之与管壳的轴线垂直,将该组件向前滑动直至感到有阻力为止。l用双手把管端组件向前推,直至管端组件伸出管壳1/2”r sgmj。l将锁环组件的B环装入槽底(环上带凸台的一侧向外)。l逆时针方向旋转B环,随后装入C环。l在槽内

34、滑动B、C环,直至方头位于右侧水平位置时装入环。l逆时针旋转锁环组件,直至方头位于垂直上方的位置(此位置可防止环掉出来)l推动固定环,直至支撑板与锁环组件相接触。l将3个固定螺丝拧入支撑板两圈。l敲打固定环四周,使固定环贴于支撑板上。l紧固固定螺丝。注意不要过紧,以免影响今后的拆卸。压力容器与膜元件的拆卸过程与安装过程步骤相反。方法详见安装方法。R/O装置的安装必须按下列条件执行:1、装置运行到现场后,应放置于室内,周围环境温度最低不得低于5C,最高不得高于38C。当温度高于35C时,应加强通风措施。2、装置到达后,应在一个月内安装完毕,并应立即进行通水试车运行。3、装置在未进行通水试车之前,

35、任何阀门均不得开启,以免保护溶液流出,致使元件损坏。4、装置就位后,应调整装置支承点,使组件处于基本水平的位置,且与基础接触可靠。5、装置与供水泵间相接的管路及阀门在连接之前应进行脱脂的处理,供水泵过流部分也应进行脱脂处理。6、装置的产水输出管最大输出高度应小于8米。7、R/O清洗系统R/O装置间如用硬管连接,则进、回液管均不得直接敷设在地面上,以免损坏。1、对装置的进水进行分析、测试,结果表明符合进水要求,方可进行装置通水调2、对供水泵的压力控制系统进行调整。3、检查装置所有管道之间连接是否完美,压力表是否安全,低压管道连接处是否紧密,有否短缺。4、全开压力表开关和总进水阀、浓水排放阀、产水

36、排放阀。5、启动预处理设备,并调整至供水量大于装置进水量。6、待出水无甲醛气味,关闭装置总进水阀。7、启动高压泵,并缓缓开启装置总进水阀,控制装置进水压力小于0.5MPa,冲洗15分钟,并检查各高、低压管路、仪表是否工作正常。8、调整进水阀、浓水排放阀,使进水压力达到1.0-1.3Mpa,且产水量,浓排水量的比例为3:1。9、检测产品水电导率,符合要求时开启产品水出水阀。2022-11-101、调试过程中进水压力不得大于1.5MPa,且只限于对装置进行耐压实验。2、操作压力控制。应在满足产水量与水质的前提下,尽量取低的压力值。3、进水温度控制。应在2025左右,最高不得大于30。4、排放量控制

37、。由于水温、操作压力等因素的变化,使装置的产水量也发生相应的变化,这时应对排放量进行调整,控制排放量与产水量之间比为1.15:3。5、装置不得长时间停运,每天至少运行2小时。如准备停机72小时以上,应用化学清洗系统向组件内冲装浓度为2%的亚硫酸氢钠溶液以实施保护。6、RO装置每次启机都应在进水压力小于0.5MPa条件下冲洗15分钟。7、操作工人应每二小时对运行参数进行记录,主要内容为:进水:电导率、压力、水温、流量 产水:电导、产水量、PH值 浓水:流量、压力8、严禁未经培训人员上岗操作。1、打开一级R/O 保安过滤器进口阀2、确认保安过滤器进口压力0.2Mpa,且出口压差不小于0.05Mpa

38、3、打开不合格产品水排放阀4、打开一级RO浓水排放阀5、打开一级浓水快冲阀6、启动阻垢剂计量泵7、打开一级高压泵出口气动阀8、运行前低压冲洗510分钟1、关闭一级R/O浓水快冲阀2、启动高压泵3、调节浓水排放阀,使回收率等于75%4、当电导度小于30s/cm时,打开产品水收集阀或启动二级RO,关闭不合格产品水排放阀1、关闭高压泵出口阀2、停高压泵3、停阻垢剂计量泵4、停多介质过滤器5、停絮凝剂计量泵6、停原水泵58206101582167510030097.31555020.6初投运时90270101902807510030097.7146001815-Jan60230101802407510

39、030098.49570185-Jan6019010140200759328098.49570184-Jan60200501902507510030098.49550233-Jan6018510135195758325098.39530192-Jan60200101502107510030098.110540201-JanPSIDPSIDPSIPSIPSI%GPMGPM%PPMPPM日期P(进水减浓水压力)P(进水减产水压力)产水压力浓水压力进水压力回收率浓水流量产水流量脱盐率产水TDS进水TDS进水温度增加正常或降低降低所有各段回收率过高增加正常或增加正常或增加随机分布O型圈或粘结部位泄漏增

40、加增加降低第一段最严重磨损(碳粒、污泥粒)增加增加正常或降低第一段最严重氧化物(如Cl2)降低或增加降低正常所有各段有机污染正常或增加降低正常或增加任何一段生物污染增加降低增加最后一段结垢正常或增加降低正常或增加第一段胶体污染正常或增加降低正常或增加第一段金属氧化物盐透过率产水流量进水与浓水间压降可能的发生地点可能的原因依据可能的污染种类选择三种溶液中的一种清洗系统脱盐率可能降低系统压降明显增加系统产水量明显降低细菌污染用溶液2清洗系统,污染严重用溶液3清洗脱盐率可能降低系统压降逐渐升高系统产水量逐渐降低有机物沉积用溶液2清洗系统,污染严重用溶液3清洗脱盐率明显下降系统压降有或适度增加系统产水

41、量稍有降低硫酸钙(一般发生于系统第二段)用溶液2清洗系统脱盐率稍有降低系统压降逐渐上升系统产水量逐渐减少各种胶体(铁、有机物及硅胶体)用溶液1清洗系统脱盐率明显下降系统压降明显升高系统产水量明显降低氧化物(铁、镍、铜等)用溶液1清洗系统脱盐率明显下降系统压降增加系统产水量稍降钙类沉积物(碳酸钙及磷酸钙类,一般发生于系统第二段)处 理 方 法一 般 特 征污 染 物17.0磅(7.7kg)2.13磅(0.97kg)100加仑(379L)17.0磅(7.7kg)7磅(3.18kg)100加仑(379L)17.0磅(7.7kg)100加仑(379L)配制100加仑(379升)溶液时的加入量用硫酸调节

42、PH至10.0三聚磷酸钠十二烷基苯磺酸钠反渗透产品水(无游离氯)3用硫酸调节PH至10.0三聚磷酸钠EDTA四钠盐反渗透产品水(无游离氯)2用氨水调节PH至3.0柠檬酸反渗管产品水(无游离氯)1PH调节成 份清洗液PH值10.0,2%三聚磷酸钠溶液、0.25%十二烷基苯磺酸钠溶液,温度40大分子天然有机物、微生物PH值10.0,2%三聚磷酸钠溶液,温度40,有时也可用PH10的NaCl水溶液清洗硫酸钙、混合胶体、小分子天然有机物、微生物PH值4.0,2%柠檬酸溶液+氨水,温度40,有时也可用PH23的盐酸水溶液清洗碳酸钙、磷酸钙、金属氧化物(铁)清 洗 溶 液污 染 物PH值7.5,2%三聚磷

43、酸钠溶液、0.25%Na-DBS溶液,温度35 生物滋长PH值75,0.5%过硼酸钠溶液、0.1%非离子清洗剂,温度35大分子天然有机物PH值7.5,2%三聚磷酸钠溶液0.8%Na-EDTA溶液、0.1%非离子清洗剂,温度35硫酸钙、混合胶体、小分子天然有机物PH值4.0,2%柠檬酸溶液、0.1%非离子清洗剂,温度25碳酸钙、磷酸钙、金属氧化物清 洗 溶 液污 染 物0.51小时1%过氧化氢和400ppm过醋酸溶液12小时10%过氧化氢溶液23小时5%过氧化氢溶液25小时0.2%过氧化氢溶液7小时100ppm次氯酸钠溶液12小时2%甲醛溶液接 触 时 间杀 菌 剂1.0661.0701.073

44、1.0761.0801.0831.0861.0901.0931.097221.1001.1031.1071.1101.1141.1171.1211.1241.1281.131211.1351.1381.1421.1451.1491.1531.1561.1601.1641.167201.1711.1751.1781.1821.1861.1891.1931.1971.2011.205191.2081.2121.2161.2201.2241.2281.2321.2361.2401.244181.2471.2511.2551.2601.2641.2661.2721.2761.2801.284171.2

45、881.2921.2961.3011.3051.3091.3131.3171.3221.326161.3301.3351.3391.3431.3481.3521.3561.3611.3651.370151.3741.3791.3831.3881.3921.3971.4011.4061.4111.415141.4201.4251.4291.4341.4391.4431.4481.4531.4581.436131.4671.4721.4771.4821.4871.4921.4971.5021.5071.512121.5171.5221.5271.5321.5371.5421.5471.5531.5

46、581.536111.5661.5471.5791.5841.5891.5951.6001.6061.6111.616101.6221.6271.6331.6381.6441.6501.6551.6611.6661.67291.6781.6831.6891.6951.7011.7071.7121.7181.7241.73081.7361.7421.7481.7541.7601.7661.7721.7781.7841.79071.7971.8031.8091.8151.8221.8281.8431.8411.8471.85361.8601.8661.8731.8791.8861.8921.899

47、1.9061.9121.91950.90.80.70.60.50.40.30.20.10.0温 度0.6230.6430.6350.6370.6390.6410.6420.6440.6460.648400.6500.6510.6530.6550.6590.6590.6600.6620.6640.666390.6680.6700.6720.6730.6750.6770.6790.6810.6830.685380.6870.6890.69000.6920.6940.6960.6980.7000.7020.704370.7060.7080.7100.7120.7140.7160.7180.7200.

48、7220.724360.7260.7280.7300.7330.7350.7370.7390.7410.7430.745350.7470.7490.7520.7540.7560.7580.7600.7620.7650.767340.7690.7710.7730.7760.7780.7800.7820.7850.7870.789330.7910.7940.7960.7980.8010.8030.8050.8080.8100.812320.8150.8170.8190.8220.8240.8270.8290.8310.8340.836310.8390.8410.8440.8460.8490.851

49、0.8540.8560.8570.861300.8640.8660.8690.8710.8740.8760.8790.8820.8840.887290.8900.8920.8950.8970.9000.9030.9060.9080.9110.914280.9160.9190.9220.9250.9270.9300.9330.9360.9390.941270.9440.9470.9500.9530.9560.9590.9610.9640.9670.970260.9730.9760.9790.9820.9850.9890.9910.9940.9971.000251.0031.0061.0091.0

50、121.0151.0181.0221.0251.0281.031241.0341.0371.0401.0441.0471.0501.0531.0571.0601.063230.90.80.70.60.50.40.30.20.10.0温 度8040元件4040元件10101010单支元件上最大压降-psig5:15:15:15:1单支元件最大浓淡水比例0.10.10.10.1最大给水余氯浓度-ppm4.04.0-4.0最大给水SDI-(15min)1.01.01.01.0最大给水浊度-NTU3.010.03.010.03.010.03.010.0给水PH范围113(45)113(45)113(4

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(RO水处理技术课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|