物流优化技术课件-第7章动态规划.ppt

上传人(卖家):晟晟文业 文档编号:4096535 上传时间:2022-11-10 格式:PPT 页数:74 大小:2.19MB
下载 相关 举报
物流优化技术课件-第7章动态规划.ppt_第1页
第1页 / 共74页
物流优化技术课件-第7章动态规划.ppt_第2页
第2页 / 共74页
物流优化技术课件-第7章动态规划.ppt_第3页
第3页 / 共74页
物流优化技术课件-第7章动态规划.ppt_第4页
第4页 / 共74页
物流优化技术课件-第7章动态规划.ppt_第5页
第5页 / 共74页
点击查看更多>>
资源描述

1、动动 态态 规规 划划(Dynamic programming)动态规划的基本思想动态规划的基本思想最短路径问题最短路径问题投资分配问题投资分配问题背包问题背包问题 动态规划是用来解决多阶段决策过程最优动态规划是用来解决多阶段决策过程最优化的一种数量方法。其特点在于,它可以把一化的一种数量方法。其特点在于,它可以把一个个n 维决策问题变换为几个一维最优化问题,从维决策问题变换为几个一维最优化问题,从而一个一个地去解决。而一个一个地去解决。需指出:动态规划是求解某类问题的一种需指出:动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种算方法,是考察问题的一种途径,而不是一种算法。必

2、须对具体问题进行具体分析,运用动态法。必须对具体问题进行具体分析,运用动态规划的原理和方法,建立相应的模型,然后再规划的原理和方法,建立相应的模型,然后再用动态规划方法去求解。用动态规划方法去求解。即在系统发展的不同时刻(或阶段)根据系统即在系统发展的不同时刻(或阶段)根据系统所处的状态,不断地做出决策;所处的状态,不断地做出决策;每个阶段都要进行每个阶段都要进行决策决策,目的是使整个过程的决策目的是使整个过程的决策 达到最优效果。达到最优效果。动态决策问题的特点:动态决策问题的特点:系统所处的状态和时刻是进行决策的重要因素;系统所处的状态和时刻是进行决策的重要因素;找到不同时刻的最优决策以及

3、整个过程的最优策略。找到不同时刻的最优决策以及整个过程的最优策略。多阶段决策问题:多阶段决策问题:是动态决策问题的一种特殊形式;是动态决策问题的一种特殊形式;在多阶段决策过程中在多阶段决策过程中,系统的动态过程可以按照时间系统的动态过程可以按照时间进程分为进程分为状态状态相互相互联系联系而又相互而又相互区别区别的各个的各个阶段阶段;多阶段决策问题的典型例子:多阶段决策问题的典型例子:1.1.生产决策问题生产决策问题:企业在生产过程中,由于:企业在生产过程中,由于需求是随时间变化的,因此企业为了获得全年的最需求是随时间变化的,因此企业为了获得全年的最佳生产效益,就要在整个生产过程中逐月或逐季度佳

4、生产效益,就要在整个生产过程中逐月或逐季度地地根据库存和需求决定生产计划。根据库存和需求决定生产计划。2.2.机器负荷分配问题机器负荷分配问题:某种机器可以在高低两:某种机器可以在高低两种不同的负荷下进行生产。在高负荷下进行生产时,种不同的负荷下进行生产。在高负荷下进行生产时,产品的年产量产品的年产量g和投入生产的机器数量和投入生产的机器数量u1的关系为的关系为g=g(u1)12n状态状态决策决策状态状态决策决策状态状态状态状态决策决策 这时,机器的年完好率为这时,机器的年完好率为a,即如果年初完好机,即如果年初完好机器的数量为器的数量为u,到年终完好的机器就为,到年终完好的机器就为au,0a

5、1。在低负荷下生产时,产品的年产量在低负荷下生产时,产品的年产量h和投入生产和投入生产的机器数量的机器数量u2的关系为的关系为 h=h(u2)假定开始生产时完好的机器数量为假定开始生产时完好的机器数量为s s1 1。要求制。要求制定一个五年计划,在定一个五年计划,在每年开始时,决定如何重新每年开始时,决定如何重新分配分配完好的完好的机器在两种不同的负荷下生产的数量机器在两种不同的负荷下生产的数量,使在五年内产品的总产量达到最高。使在五年内产品的总产量达到最高。相应的机器年完好率相应的机器年完好率b b,0,0 b b11。3.3.航天飞机飞行控制问题:由于航天飞机的航天飞机飞行控制问题:由于航

6、天飞机的运动的环境是不断变化的,因此就要根据航天飞机运动的环境是不断变化的,因此就要根据航天飞机飞行在不同环境中的情况,不断地决定航天飞机的飞行在不同环境中的情况,不断地决定航天飞机的飞行方向和速度(状态),使之能最省燃料和实现飞行方向和速度(状态),使之能最省燃料和实现目的(如软着落问题)。目的(如软着落问题)。不包含时间因素的静态决策问题(本质上是一不包含时间因素的静态决策问题(本质上是一次决策问题)也可以适当地引入阶段的概念,作为次决策问题)也可以适当地引入阶段的概念,作为多阶段的决策问题用动态规划方法来解决。多阶段的决策问题用动态规划方法来解决。4 4.线性规划、非线性规划等静态的规划

7、问题也线性规划、非线性规划等静态的规划问题也可以通过适当地引入阶段的概念,应用动态规划方可以通过适当地引入阶段的概念,应用动态规划方法加以解决。法加以解决。5.最短路问题最短路问题:给定一个交通网络图如下,其:给定一个交通网络图如下,其中两点之间的数字表示距离(或花费),试求从中两点之间的数字表示距离(或花费),试求从A点点到到G点的最短距离(总费用最小)。点的最短距离(总费用最小)。123456AB1B2C1C2C3C4D1D2D3E1E2E3F1F2G531368763685338422213335256643(一)、基本概念(一)、基本概念 1、阶段:、阶段:把一个问题的过程,恰当地分为

8、若干个相互联系的把一个问题的过程,恰当地分为若干个相互联系的阶段阶段,以便于按一定的次序去求解。,以便于按一定的次序去求解。描述阶段的变量称为描述阶段的变量称为阶段变量阶段变量。阶段的划分,一般。阶段的划分,一般是根据时间和空间的自然特征来进行的,但要便于问题是根据时间和空间的自然特征来进行的,但要便于问题转化为多阶段决策。转化为多阶段决策。2、状态:表示每个阶段开始所处的、状态:表示每个阶段开始所处的自然状况或客观自然状况或客观条件条件。通常一个阶段有若干个状态,描述过程状态的。通常一个阶段有若干个状态,描述过程状态的变量称为变量称为状态变量状态变量。年、月、年、月、路段路段一个数、一个数、

9、一组数、一组数、一个向一个向量量 状态变量的取值有一定的允许集合或范围,此集合状态变量的取值有一定的允许集合或范围,此集合称为称为状态允许集合状态允许集合。一、动态规划的基本思想一、动态规划的基本思想 3、决策:表示当过程处于某一阶段的某个状态时,、决策:表示当过程处于某一阶段的某个状态时,可以作出不同的决定,从而确定下一阶段的状态可以作出不同的决定,从而确定下一阶段的状态,这这种决定称为种决定称为决策决策。描述决策的变量,称为描述决策的变量,称为决策变量决策变量。决策变量是状态。决策变量是状态变量的函数。可用一个数、一组数或一向量(多维情变量的函数。可用一个数、一组数或一向量(多维情形)来描

10、述。形)来描述。在实际问题中决策变量的取值往往在某一范围之内,在实际问题中决策变量的取值往往在某一范围之内,此范围称为此范围称为允许决策集合允许决策集合。系统在某一阶段的状态转移不但与系统的当前的状态系统在某一阶段的状态转移不但与系统的当前的状态和决策有关,而且还与系统过去的历史状态和决策有和决策有关,而且还与系统过去的历史状态和决策有关。关。4、多阶段决策过程多阶段决策过程 可以在各个阶段进行决策,去控制过程发展的多段过可以在各个阶段进行决策,去控制过程发展的多段过程;程;其发展是通过一系列的状态转移来实现的;其发展是通过一系列的状态转移来实现的;),(),(),(2211122112311

11、12kkkkusususTsususTsusTs 图示如下:图示如下:状态转移方程是确定状态转移方程是确定过程由一个状态到另过程由一个状态到另一个状态的演变过程。一个状态的演变过程。如果第如果第k阶段状态变量阶段状态变量sk的值、该阶段的决策的值、该阶段的决策变量一经确定,第变量一经确定,第k+1阶段状态变量阶段状态变量sk+1的值的值也就确定。也就确定。其状态转移方程如下(一般形式)其状态转移方程如下(一般形式)12ks1u1s2u2s3skuksk+1 能用动态规划方法求解的多阶段决策过程是一类能用动态规划方法求解的多阶段决策过程是一类特殊的多阶段决策过程,即特殊的多阶段决策过程,即具有无

12、后效性具有无后效性的多阶段的多阶段决策过程。决策过程。如果状态变量不能满足无后效性的要求,应如果状态变量不能满足无后效性的要求,应适当地改变状态的定义或规定方法。适当地改变状态的定义或规定方法。),(),(),(122231112kkkkusTsusTsusTs 动态规划中能动态规划中能处理的状态转移处理的状态转移方程的形式方程的形式。状态具有无后效性的多阶段决策过程的状状态具有无后效性的多阶段决策过程的状态转移方程如下态转移方程如下无后效性无后效性(马尔可夫性马尔可夫性)如果某阶段状态给定后,则在这个阶段以后如果某阶段状态给定后,则在这个阶段以后过程的发展不受这个阶段以前各段状态的影响;过程

13、的发展不受这个阶段以前各段状态的影响;过程的过去历史只能通过当前的状态去影响过程的过去历史只能通过当前的状态去影响它未来的发展;它未来的发展;构造动态规划模型时,要充分注意构造动态规划模型时,要充分注意是否满足无后效性的要求;是否满足无后效性的要求;状态变量要满足无后效性的要求状态变量要满足无后效性的要求;5 5、策略:是一个按顺序排列的决策组成的集合。在、策略:是一个按顺序排列的决策组成的集合。在实际问题中,可供选择的策略有一定的范围,称为实际问题中,可供选择的策略有一定的范围,称为允允许策略集合许策略集合。从允许策略集合中找出达到最优效果的。从允许策略集合中找出达到最优效果的策略称为策略称

14、为最优策略最优策略。6 6、状态转移方程:是确定过程由一个状态到另一、状态转移方程:是确定过程由一个状态到另一个状态的演变过程,描述了状态转移规律。个状态的演变过程,描述了状态转移规律。7 7、指标函数和最优值函数:用来衡量所实现过程优、指标函数和最优值函数:用来衡量所实现过程优劣的一种数量指标,为劣的一种数量指标,为指标函数指标函数。指标函数的最优值,。指标函数的最优值,称为称为最优值函数最优值函数。在不同的问题中,指标函数的含义。在不同的问题中,指标函数的含义是不同的,它可能是距离、利润、成本、产量或资源是不同的,它可能是距离、利润、成本、产量或资源消耗等。消耗等。动态规划模型的指标函数,

15、应具有可分离性,并满动态规划模型的指标函数,应具有可分离性,并满足足递推递推关系关系。小结小结:),()(1,susVoptsfnkknkkkuunk),(,111,1nkknkkkksusVus方程方程 :状态转移方程状态转移方程),(1kkkkusTs概念概念 :阶段变量阶段变量k k状态变量状态变量s sk k决策变量决策变量u uk k;指标指标:),(111,nkkkknknksususVV动态规划本质上是多阶段决策过程动态规划本质上是多阶段决策过程;效益效益指标函数形式指标函数形式:和、和、积积无后效性无后效性),(111,nkkkknksususV可递推可递推,*2*1nuuu,

16、*2*1nsss解多阶段决策过程问题,求出解多阶段决策过程问题,求出 最优策略最优策略,即最优,即最优决策序列决策序列 susvoptsfnkknkkkuunk1,f1(s1)最优轨线最优轨线,即执行最优策略时的即执行最优策略时的状态序列状态序列 最优目标函数值最优目标函数值),(*1*1*,1*,1nnnnususVV从从 k 到终点最优策略到终点最优策略子策略的最优目标函数值子策略的最优目标函数值 1、动态规划方法的关键在于正确地写出基本的递推、动态规划方法的关键在于正确地写出基本的递推关系式和恰当的边界条件(简称基本方程)。要做到关系式和恰当的边界条件(简称基本方程)。要做到这一点,就必

17、须将问题的过程分成几个相互联系的阶这一点,就必须将问题的过程分成几个相互联系的阶段,恰当的选取状态变量和决策变量及定义最优值函段,恰当的选取状态变量和决策变量及定义最优值函数,从而把一个大问题转化成一组同类型的子问题,数,从而把一个大问题转化成一组同类型的子问题,然后逐个求解。即从边界条件开始,逐段递推寻优,然后逐个求解。即从边界条件开始,逐段递推寻优,在每一个子问题的求解中,均利用了它前面的子问题在每一个子问题的求解中,均利用了它前面的子问题的最优化结果,依次进行,最后一个子问题所得的最的最优化结果,依次进行,最后一个子问题所得的最优解,就是整个问题的最优解。优解,就是整个问题的最优解。(二

18、)、动态规划的基本思想(二)、动态规划的基本思想 2、在多阶段决策过程中,动态规划方法是既把当前、在多阶段决策过程中,动态规划方法是既把当前一段和未来一段分开,又把当前效益和未来效益结合一段和未来一段分开,又把当前效益和未来效益结合起来考虑的一种最优化方法。因此,每段决策的选取起来考虑的一种最优化方法。因此,每段决策的选取是从全局来考虑的,与该段的最优选择答案一般是不是从全局来考虑的,与该段的最优选择答案一般是不同的同的.最优化原理:作为整个过程的最优策略具有这样的最优化原理:作为整个过程的最优策略具有这样的性质:无论过去的状态和决策如何,相对于前面的决性质:无论过去的状态和决策如何,相对于前

19、面的决策所形成的状态而言,余下的决策序列必然构成最优策所形成的状态而言,余下的决策序列必然构成最优子策略。子策略。”也就是说,一个最优策略的子策略也是最也就是说,一个最优策略的子策略也是最优的。优的。3、在求整个问题的最优策略时,由于初始状态是、在求整个问题的最优策略时,由于初始状态是已知的,而每段的决策都是该段状态的函数,故最优已知的,而每段的决策都是该段状态的函数,故最优策略所经过的各段状态便可逐段变换得到,从而确定策略所经过的各段状态便可逐段变换得到,从而确定了最优路线。了最优路线。(三)、建立动态规划模型的步骤(三)、建立动态规划模型的步骤 1 1、划分阶段、划分阶段划分阶段是运用动态

20、规划求解多阶段决策问题的第一划分阶段是运用动态规划求解多阶段决策问题的第一步,在确定多阶段特性后,按时间或空间先后顺序,步,在确定多阶段特性后,按时间或空间先后顺序,将过程划分为若干相互联系的阶段。对于静态问题要将过程划分为若干相互联系的阶段。对于静态问题要人为地赋予人为地赋予“时间时间”概念,以便划分阶段。概念,以便划分阶段。2 2、正确选择状态变量、正确选择状态变量选择变量既要能确切描述过程演变又要满足无后效性,选择变量既要能确切描述过程演变又要满足无后效性,而且各阶段状态变量的取值能够确定。一般地,状态而且各阶段状态变量的取值能够确定。一般地,状态变量的选择是从过程演变的特点中寻找。变量

21、的选择是从过程演变的特点中寻找。3 3、确定决策变量及允许决策集合、确定决策变量及允许决策集合通常选择所求解问题的关键变量作为决策变量,同时通常选择所求解问题的关键变量作为决策变量,同时要给出决策变量的取值范围,即确定允许决策集合。要给出决策变量的取值范围,即确定允许决策集合。4 4、确定状态转移方程、确定状态转移方程根据根据k 阶段状态变量和决策变量,写出阶段状态变量和决策变量,写出k+1阶段状态变阶段状态变量,状态转移方程应当具有递推关系。量,状态转移方程应当具有递推关系。5 5、确定阶段指标函数和最优指标函数,建立动态规、确定阶段指标函数和最优指标函数,建立动态规划基本方程划基本方程 阶

22、段指标函数是指第阶段指标函数是指第k 阶段的收益,最优指标函数阶段的收益,最优指标函数是指从第是指从第k 阶段状态出发到第阶段状态出发到第n 阶段末所获得收益的最阶段末所获得收益的最优值,最后写出动态规划基本方程。优值,最后写出动态规划基本方程。以上五步是建立动态规划数学模型的一般步骤。由于以上五步是建立动态规划数学模型的一般步骤。由于动态规划模型与线性规划模型不同,动态规划模型没有统动态规划模型与线性规划模型不同,动态规划模型没有统一的模式,建模时必须根据具体问题具体分析,只有通过一的模式,建模时必须根据具体问题具体分析,只有通过不断实践总结,才能较好掌握建模方法与技巧。不断实践总结,才能较

23、好掌握建模方法与技巧。例一、从例一、从A 地到地到D 地要铺设一条煤气管道地要铺设一条煤气管道,其中需经过其中需经过两级中间站,两点之间的连线上的数字表示距离,如两级中间站,两点之间的连线上的数字表示距离,如图所示。问应该选择什么路线,使总距离最短?图所示。问应该选择什么路线,使总距离最短?AB1B2C1C2C3D24333321114二、最短路径问题二、最短路径问题 解:整个计算过程分三个阶段,从最后一个阶段开始。解:整个计算过程分三个阶段,从最后一个阶段开始。第一阶段(第一阶段(C D):):C 有三条路线到终点有三条路线到终点D。AB1B2C1C2C3D24333321114DC1C2C

24、3显然有显然有 f1(C1)=1 ;f1(C2)=3 ;f1(C3)=4 d(B1,C1)+f1(C1)3+1 f2(B1)=min d(B1,C2)+f1(C2)=min 3+3 d(B1,C3)+f1(C3)1+4 4 =min 6 =4 5第二阶段(第二阶段(B C):):B 到到C 有六条路线。有六条路线。AB1B2C1C2C3D24333321114DC1C2C3B1B2(最短路线为最短路线为B1C1 D)d(B2,C1)+f1(C1)2+1 f2(B2)=min d(B2,C2)+f1(C2)=min 3+3 d(B2,C3)+f1(C3)1+4 3 =min 6 =3 5AB1B

25、2C1C2C3D24333321114DC1C2C3B1B2(最短路线为最短路线为B2C1 D)第三阶段(第三阶段(A B):):A 到到B 有二条路线有二条路线。f3(A)1=d(A,B1)f2(B1)246 f3(A)2=d(A,B2)f2(B2)437 f3(A)=min =min6,7=6d(A,B1)f2(B1)d(A,B2)f2(B2)(最短路线为最短路线为AB1C1 D)AB1B2C1C2C3D24333321114DC1C2C3B1B2AAB1B2C1C2C3D24333321114DC1C2C3B1B2A最短路线为最短路线为 AB1C1 D 路长为路长为 6练习练习1:AB1

26、B2C1C2C3C4D1D2D3E1E2E3F1F2G53136876368533842221333525664最优路线为:最优路线为:A B1 C2 D1 E2 F2 G 路长路长18求从求从A到到G的最短路径的最短路径3k=5k=5,出发点,出发点E1E1、E2E2、E3E3 73543min,min2621516115FfFEdFfFEdu5(E1)=F1E1 F1 G 53245min,min262251612525FfFEdFfFEdfEAB1B2C1C2C3C4D1D2D3E1E2E3F1F2G531368766835338422123335526643)(15Efu5(E2)=F

27、2E2 F2 G 93646min,min262351613535FfFEdFfFEdfEu5(E3)=F2E3 F2 Gk=6k=6,F1 G f f6 6(F1)=4(F1)=4F F2 2 G ,f,f6 6(F2)=3(F2)=3k=4,f4(D1)=7 u4(D1)=E2f4(D2)=6 u4(D2)=E2f4(D3)=8 u4(D3)=E2k=2,f2(B1)=13 u2(B1)=C2 f2(B2)=16 u2(B2)=C3f3(C1)=13 u3(C1)=D1f3(C2)=10 u3(C2)=D1f3(C3)=9 u3(C3)=D1f3(C4)=12 u3(C4)=D3k=3,=

28、minf1(A)=mind1(A,B1)+f2(B1)d1(A,B2)+f2(B2)5+133+16=18k=1,u1(A)=B1u2(B1)=C2u3(C2)=D1u4(D1)=E2u1(A)=B1u2(B1)=C2u3(C2)=D1u4(D1)=E2u5(E1)=F1E1 F1 Gu5(E2)=F2E2 F2 Gu5(E3)=F2E3 F2 G7 5 9 u5(E2)=F2u6(F2)=G最优策略最优策略AB1B2C1C2C3C4D1D2D3E1E2E3F1F2G531368763685338422213335256643求从求从A到到E的最短路径的最短路径路线为路线为AB2C1 D1 E

29、,最短路径为最短路径为1919AB2B1B3C1C3D1D2EC25214112610104312111396581052练习练习2:1 现有数量为现有数量为a(万元)的资金,计划分配给(万元)的资金,计划分配给n 个工厂个工厂,用于扩大再生产。用于扩大再生产。假设:假设:xi 为分配给第为分配给第i 个工厂的资金数量(万元)个工厂的资金数量(万元);gi(xi)为第为第i 个工厂得到资金后提供的利润值(万元)。个工厂得到资金后提供的利润值(万元)。问题是如何确定各工厂的资金数,使得总的利润为问题是如何确定各工厂的资金数,使得总的利润为最大。最大。nixaxxgZiniiniii.2.1 0)

30、(max11据此,有下式:据此,有下式:三、投资分配问题三、投资分配问题 令:令:fk(x)=以数量为以数量为x 的资金分配给前的资金分配给前k 个工厂,所个工厂,所得到的最大利润值。得到的最大利润值。用动态规划求解,就是求用动态规划求解,就是求 fn(a)的问题。的问题。当当 k=1 时,时,f1(x)=g1(x)(因为只给一个工厂)(因为只给一个工厂)当当1kn 时,其递推关系如下:时,其递推关系如下:设:设:y 为分给第为分给第k 个工厂的资金(其中个工厂的资金(其中 0y x),此时),此时还剩还剩 x y(万元)的资金需要分配给前(万元)的资金需要分配给前 k-1 个工厂个工厂,如如

31、果采取最优策略,则得到的最大利润为果采取最优策略,则得到的最大利润为fk1(xy),因此因此总的利润为:总的利润为:gk(y)fk1(xy)nkyxfygxfkkxyk.3.2)()(max)(10其其中中 如果如果a 是以万元为资金分配单位,则式中的是以万元为资金分配单位,则式中的y 只取只取非负整数非负整数0,1,2,x。上式可变为:。上式可变为:)()(max)(1,2,1,0yxfygxfkkxyk所以,根据动态规划的最优化原理,有下式:所以,根据动态规划的最优化原理,有下式:例题:例题:设国家拨给设国家拨给60万元投资,供四个工厂扩建使用,每万元投资,供四个工厂扩建使用,每个工厂扩建

32、后的利润与投资额的大小有关,投资后的个工厂扩建后的利润与投资额的大小有关,投资后的利润函数如下表所示。利润函数如下表所示。投资投资利润利润0102030405060g1(x)0205065808585g2(x)0204050556065g3(x)0256085100110115g4(x)0254050606570解:依据题意,是要求解:依据题意,是要求 f4(60)。按顺序解法计算。按顺序解法计算。第一阶段:求第一阶段:求 f1(x)。显然有。显然有 f1(x)g1(x),得到下表,得到下表 投资投资利润利润0102030405060f1(x)g1(x)0205065808585最优策略最优策

33、略0102030405060第二阶段:求第二阶段:求 f2(x)。此时需考虑第一、第二个工厂如。此时需考虑第一、第二个工厂如何进行投资分配,以取得最大的总利润。何进行投资分配,以取得最大的总利润。)60()(max)60(1260,10,02yfygfy12006520605055655080408520850max)0()60()10()50()20()40()30()30()40()20()50()10()60()0(max12121212121212fgfgfgfgfgfgfg最优策略为(最优策略为(40,20),此时最大利润为),此时最大利润为120万元。万元。同理可求得其它同理可求得

34、其它 f2(x)的值。的值。105)0()50()10()40()20()30()30()20()40()10()50()0()50()(max)50(1212121212121250,10,02fgfgfgfgfgfgyfygfy最优策略为(最优策略为(30,20),此时最大利润为),此时最大利润为105万元。万元。90 )40()(max)40(1240,10,02yfygfy最优策略为(最优策略为(20,20),此时最大利润为),此时最大利润为90万元。万元。70 )30()(max)30(1230,20,10,02yfygfy最优策略为(最优策略为(20,10),此时最大利润为),此时

35、最大利润为70万元。万元。50 )20()(max)20(1220,10,02yfygfy20 )10()(max)10(12,10,02yfygfy最优策略为(最优策略为(10,0)或()或(0,10),此时最大利润,此时最大利润为为20万元。万元。f2(0)0。最优策略为(最优策略为(0,0),最大利润为),最大利润为0万元。万元。得到下表得到下表最优策略为(最优策略为(20,0),此时最大利润为),此时最大利润为50万元。万元。投资投资利润利润0102030405060f2(x)020507090105120最优策略最优策略(0,0)(10,0)(0,10)(20,0)(20,10)(2

36、0,20)(30,20)(40,20)第三阶段:求第三阶段:求 f3(x)。此时需考虑第一、第二及第三个。此时需考虑第一、第二及第三个工厂如何进行投资分配,以取得最大的总利润。工厂如何进行投资分配,以取得最大的总利润。)60()(max)60(2360,10,03yfygfy1550115201105010070859060105251200max)0()60()10()50()20()40()30()30()40()20()50()10()60()0(max23232323232323fgfgfgfgfgfgfg最优策略为(最优策略为(20,10,30),最大利润为),最大利润为155万元。

37、万元。同理可求得其它同理可求得其它 f3(x)的值。得到下表的值。得到下表 投资投资利润利润0102030405060f3(x)0256085110135155最优最优策略策略(0,0,0)(0,0,10)(0,0,20)(0,0,30)(20,0,20)(20,0,30)(20,10,30)第四阶段:求第四阶段:求 f4(60)。即问题的最优策略。即问题的最优策略。)60()(max)60(3460,10,04yfygfy16007025656060855011040135251550max)0()60()10()50()20()40()30()30()40()20()50()10()60(

38、)0(max34343434343434fgfgfgfgfgfgfg最优策略为(最优策略为(20,0,30,10),最大利润为),最大利润为160万元。万元。练习:练习:求投资分配问题得最优策略,其中求投资分配问题得最优策略,其中a50 万元,其余万元,其余资料如表所示。资料如表所示。投资投资利润利润01020304050g1(x)02140528085g2(x)015365073100g3(x)02560656870例:某公司打算在例:某公司打算在3个不同的地区设置个不同的地区设置4个销售点,个销售点,根据市场部门估计,在不同地区设置不同数量的销根据市场部门估计,在不同地区设置不同数量的销售

39、点每月可得到的利润如表所示。试问在各地区如售点每月可得到的利润如表所示。试问在各地区如何设置销售点可使每月总利润最大。何设置销售点可使每月总利润最大。地地区区销售点销售点01234123000161210251714302116322217 x1=2,x2=1,x3=1,f3(4)=47 有一个徒步旅行者,其可携带物品重量的限度为有一个徒步旅行者,其可携带物品重量的限度为a 公公斤,设有斤,设有n 种物品可供他选择装入包中。已知每种物品种物品可供他选择装入包中。已知每种物品的重量及使用价值(作用),问此人应如何选择携带的重量及使用价值(作用),问此人应如何选择携带的物品(各几件),使所起作用(

40、使用价值)最大?的物品(各几件),使所起作用(使用价值)最大?物品物品 1 2 j n重量(公斤重量(公斤/件)件)a1 a2 aj an每件使用价值每件使用价值 c1 c2 cj cn 这就是背包问题。类似的还有工厂里的下料问题、这就是背包问题。类似的还有工厂里的下料问题、运输中的货物装载问题、人造卫星内的物品装载问题运输中的货物装载问题、人造卫星内的物品装载问题等。等。四、背包问题四、背包问题设设xj 为第为第j 种物品的装件数(非负整数)则问题的数学种物品的装件数(非负整数)则问题的数学模型如下:模型如下:).2.1(0max1njxaxaxcZjnijjjnjjj 且且为为整整数数用动

41、态规划方法求解,令用动态规划方法求解,令 fx(y)=总重量不超过总重量不超过 y 公斤,包中只装有前公斤,包中只装有前k 种物品种物品时的最大使用价值。时的最大使用价值。其中其中y 0,k 1,2,n。所以问题就是求所以问题就是求 fn(a)其递推关系式为:其递推关系式为:nkxayfxcyfkkkkkayxkkk 2)(max)(10 其其中中当当 k=1 时,有:时,有:的的最最大大整整数数表表示示不不超超过过其其中中1111111 ,)(ayayayxaycyf例题:求下面背包问题的最优解例题:求下面背包问题的最优解 且且为为整整数数0,55231258max321321321xxxx

42、xxxxxZ物品物品 1 2 3重量(公斤)重量(公斤)3 2 5使用价值使用价值 8 5 12解:解:a5 ,问题是求,问题是求 f3(5)55(12max)5(323503333xfxfxax 整整数数 )1()0(223231032355032350333333333)0(12),5(0max)55(12max)55(12max)55(12max)5(xxxxxxaxffxfxxfxxfxf ,整整数数整整数数 5 5 )(2)1()0(1112122,10212250212502222222222)1(10),3(5),5(0max)25(max)25(max)25(5max)5(xx

43、xxxxxaxfffxfxxfxxfxf,整数整数整数整数 )0()0(0max)20(max)20(max)20(5max)0(1)0(121202122002120022222222ffxfxxfxxfxfxxxxxax 5 5 整数整数整数整数)0(0308)0()0(0318)1()1(8338)3()1(8358)5(1111111111111111 xxcfxxcfxxcfxxcf )1,1(1310,85,8max)1(10),3(5),5(0max)5(212)1()0(1112222 xxffffxxx )()0,0(0)0()0(0max)0(211)0(122 xxfff

44、x )0,1,1(13012,130max)0(12),5(0max)5(321)1()0(22333 xxxfffxx所以,最优解为所以,最优解为 X(1.1.0),),最优值为最优值为 Z=13。练习练习1:某厂生产三种产品,各种产品重量与利:某厂生产三种产品,各种产品重量与利润的关系如表所示。现将此三种产品运往市场出售,润的关系如表所示。现将此三种产品运往市场出售,运输能力总重量不超过运输能力总重量不超过 6 吨,问如何安排运输,使吨,问如何安排运输,使总利润最大?总利润最大?种类种类 1 2 3重量(吨)重量(吨)2 3 4 单件利润(元)单件利润(元)80 130 180最优方案:最

45、优方案:X1=(0.2.00.2.0)X2=(1.0.11.0.1)Z=260=260 练习练习2:求下列问题的最优解:求下列问题的最优解 且且为为整整数数0,10543654max321321321xxxxxxxxxZ X=(2.1.0)最优值为最优值为 Z=13五、流通加工的排序问题 1、加工作业排序:是指在一定时期内分配给各个加工单位的生产任务,根据加工工艺和负荷的可能性,确定各加工单位流通加工作业开始的时间、作业结束时间,并进行作业顺序编号。2、评价加工顺序安排的主要指标(1)最大流程;在某工作地完成加工的各项任务所需流程之和;Fmax min(2)平均流程:在某工作地完成加工的各项任

46、务平均所需经过的时间;niiFnF11(3)最大延期量:指如果任务的完成时刻Ci已超过交货时刻di,则形成交货延期 Di=Ci-di,最大延期量Dmax=max Di.Dmax min(4)平均延期量:niiDnD113、n 1 排序问题排序问题方法(1)最短加工时间规则:按加工任务所需加工时间长短,从短到长按顺序排列,数值最小者排在最前面加工,最大者排在最后面加工。案例1、设某班组利用某一大型设备进行6项流通加工任务,所需时间及预定交货期如下表所示:各项任务的加工时间及预定交货期 单位:(d)任务编号 J1 J2 J3 J4 J5 J6 所需加工时间ti 5 8 2 7 9 3 预定交货期

47、di 26 22 23 8 34 24 任务编号 J3 J6 J1 J4 J2 J5合计 所需加工时间ti 2 3 5 7 8 9 预定交货期 di 23 24 26 8 22 34 计划完成时刻Fi 2 5 10 17 25 34 93 交货延期量Di 0 0 0 9 3 0 12 平均流程为15.5天,最大延期量为9天,平均延期量为2天.加工排序的方案是:J3 J6 J1 J4 J2 J5(2)最早预定交货期规则:即按预定交货期的先后顺序进行排列。预定交货期最早的排在最前,最晚的排在最后。任务编号 J4 J2 J3 J6 J1 J5合计 所需加工时间ti 7 8 2 3 5 9 预定交货期

48、 di 8 22 23 24 26 34 计划完成时刻Fi 7 15 17 20 25 34 118 交货延期量Di 0 0 0 0 0 0 0 平均流程为19.7天,最大延期量为0天,平均延期量为0天.加工排序的方案是:J4 J2 J3 J6 J1 J5(3)综合规则:将上述两种规则综合使用的方法。步骤:A.先根据最早预定交货期规则,安排一个最大延期量为最小的方案。J4-J2-J3-J6-J1-J5 B.计算完成所有任务总时间。34(d)C.查出初始方案中预定交货期大于等于总时间的加工任务,按最短加工时间规则,把加工时间最长的排在最后。J5 D.暂舍去已排定的J5,剩下J4-J2-J3-J6

49、-J1回到第B.步。E.最后排定的顺序为:J4-J3-J6-J2-J1-J5 任务编号 J4 J3 J6 J2 J1 J5合计 所需加工时间ti 7 2 3 8 5 9 预定交货期 di 8 23 24 22 26 34 计划完成时刻Fi 7 9 12 20 25 34 107 交货延期量Di 0 0 0 0 0 0 0 平均流程为17.8天,最大延期量为0天,平均延期量为0天.加工排序的方案是:J4 J3 J6 J2 J1 J5 2、n 2 排序问题排序问题 即即n 种零件经过种零件经过2 种设备进行加工,如何安排?种设备进行加工,如何安排?例二、例二、49523B53786A 零件零件2j

50、1j3j4j5j设备设备ABT经变换为经变换为49523B53786A 零件零件2j1j3j4j5j设备设备加工顺序图如下:加工顺序图如下:ABT3j1j2j4j5j3756895432+2+2-5 加工周期加工周期 T=3+7+5+6+8+2=31小小即即BAtti 3、n 3 排序问题排序问题 即即n 种零件经过种零件经过 3 种设备进行加工,如何安排?种设备进行加工,如何安排?例三、例三、3468564683579310CBA1j2j3j4j5jABCT变换变换4+36+45+86+56+48+65+37+53+910+3B+CA+B1j2j3j4j5j排序排序4+36+45+86+56

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(物流优化技术课件-第7章动态规划.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|