1、压裂分析解释和设计压裂分析解释和设计汇报提纲1、三维压裂设计软件介绍2、实例分析1.1 Fracpro PT的主要模块压裂设计模块压裂分析模块产能模块数据转换模块评价最合适的裂缝缝长,生成设计施工泵序一览表。进行测试压裂分析和净压力拟合,可以确定闭合应力,地层参数,分析近井筒摩阻和多裂缝效应。根据设计模块中压裂裂缝扩展和支撑剂运移模型,模拟支撑剂浓度剖面对产能的影响1.2 压裂分析模块压裂分析模块压裂分析的步骤:净压力拟合测试压裂分析tubcPnetPPPP液柱摩阻模拟净压力是由计算机根据模型计算得到测定净压力:确定闭合应力、瞬间停泵压力和净压力入口摩阻分析确定孔眼摩阻和近井筒摩阻确定砂岩渗透
2、率、多裂缝系数和造壁系数1.2 压裂分析模块压裂分析模块闭合应力:地层裂缝闭合时液体压力确定闭合压力方法平方根法G函数法双对数法理想条件时,为地层最小水平主应力地层复杂时,为裂缝高度贯穿地层最小水平主应力的平均值净压力闭合时间ISIP(瞬间停泵压力)井底压力时间1.2 压裂分析模块压裂分析模块Square-root-of-shutdown timeBHPdP/dtPressure,dP/dtFracture closureReference lineSquare-root-of-shutdown timeBHPdP/dtdP/dtPressure,dP/dtFracture closureRe
3、ference line平方根法:P=BHP-ISIPLog Scale(P,t*dP,dt)Fracture closuret*dP/dtLog Scale(t=t-t shut-down)-slopeRadial flowlinear flowP=BHP-ISIPLog Scale(P,t*dP,dt)Fracture closuret*dP/dtLog Scale(t=t-t shut-down)-slopeRadial flowlinear flow1-slope双对数法:小型压裂闭合压力分析的基础是裂缝闭合前的流体流动为线性流,闭合小型压裂闭合压力分析的基础是裂缝闭合前的流体流动为线
4、性流,闭合后为过度阶段后为过度阶段1.2 压裂分析模块压裂分析模块G函数法:BHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGReference lineG-functionBHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGReference lineG-function BHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGReference lineG-functionDeviation below reference line
5、 could indicate height recessionBHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGReference lineG-functionDeviation below reference line could indicate height recession G-functionBHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGReference lineDeviation above reference line could indicate press
6、ure dependent leakoff/fissure openingG-functionBHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGReference lineDeviation above reference line could indicate pressure dependent leakoff/fissure opening BHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGG-functionReference lineLinear behavior,but
7、intersection above the origin could indicate fracture growth after shut-downBHPdP/dGPressure,dP/dG,G*dP/dGFracture closureG*dP/dGG-functionReference lineLinear behavior,but intersection above the origin could indicate fracture growth after shut-down 1.2 压裂分析模块压裂分析模块入口摩阻:包括孔眼摩阻和近井筒摩阻理想的裂缝理想的裂缝实际的裂缝实际
8、的裂缝理想裂缝实际裂缝采用降排量分析方法确定采用降排量分析方法确定2.实例分析实例分析井筒结构:下入深度内径(cm)外径(cm)钢级套管288015.47917.78N-80油管27654.7077.302N-80射孔深度:27702775 m采用TY102-127,孔径为1.25 cm,孔密为16 个/m 2.实例分析实例分析储层物性:储层深度为27562775 m;测井渗透率为1 md;孔隙度为10%;含油饱和度为70%;孔隙压力:27.29 MPa流体压缩系数:0.0366 1/MPa粘度:0.03 mpas杨氏模量:20000 MPa泊松比:砂0.2,泥0.25压裂液和支撑剂:压裂液为
9、0.45%的胍胶支撑剂为20-40目的陶粒实例分析实例分析清水压裂清水压裂井底瞬间停泵压力40.71 MPa井底闭合压力35.72 MPa,闭合应力梯度0.0129 MPa/m,闭合时间61 min,净压力4.99 MPa测试压裂分析实例分析实例分析清水压裂清水压裂井底闭合应力35.71 MPa,闭合应力梯度0.0129 MPa/m,闭合时间60.52 min,净压力5 MPa井底闭合应力35.71 MPa,闭合应力梯度0.0129 MPa/m两种方法平均值:测试压裂分析实例分析实例分析清水压裂清水压裂入口摩阻分析孔眼摩阻1.11 MPa近井筒摩阻0.64 MPa结论:以孔眼摩阻为主入口摩阻分
10、析净压力拟合砂岩渗透率0.022 md实例分析实例分析胍胶压裂胍胶压裂入口摩阻分析孔眼摩阻0.56 MPa近井筒摩阻0.46 MPa净压力拟合胍胶造壁系数910-5 m/min0.5,泥岩闭合应力梯度0.016 MPa/m结论:与清水压裂相比孔眼摩阻降低实例分析实例分析主压裂主压裂时间体积因子 开缝因子滤失因子011117111401.51.51.567333净压力拟合多裂缝效应结论:随着加砂液的泵入,有更多的裂缝张开实例压裂设计实例压裂设计长度(米)加砂量(吨)产量(万方)506.8330.3102.317.7423.8150.936.3508.8207.661.8561251.199.15
11、83.3优化缝长:结论:缝长150 m为最优实例压裂设计实例压裂设计泵注阶段类型排量支撑剂浓度净液体积泵注阶段时间累计时间液体类型支撑剂类型(m3/min)(kg/m3)(m3)(min)(min:sec)主压裂的前置液3018.9276.31 6:18 HPG-1主压裂的携砂液3603.7851.28 7:35 HPG-1陶粒20/40主压裂的携砂液31207.5712.61 10:12 HPG-1陶粒20/40主压裂的携砂液318011.3563.99 14:11 HPG-1陶粒20/40主压裂的携砂液324018.9276.76 20:56 HPG-1陶粒20/40主压裂的携砂液3300
12、30.28310.99 31:56 HPG-1陶粒20/40主压裂的携砂液335945.42516.75 48:41 HPG-1陶粒20/40主压裂的携砂液341964.35224.11 72:48 HPG-1陶粒20/40主压裂的顶替304.9051.63 74:26 HPG-1泵序一览表实例压裂设计实例压裂设计前置液百分比8.7%净液体积(主压裂液)205.53 m3支撑剂总量60.1 t前置液体积18.93 m3砂液总体积223.32 m3顶替液体积4.9 m3施工参数:裂缝长度 168 m裂缝总高度45.8 m裂缝宽度5.14 cm支撑缝长 157.2 m支撑缝高度42.8 m实例压裂设计实例压裂设计裂缝剖面裂缝剖面250026002700280029003000岩石类型2050应力(MPa)地层参数TVD(m)TVD(m)ShaleShaleSandstoneSandstoneShaleShale00.490.981.52.02.42.93.43.94.44.9支撑剂浓度(kg/m2)裂缝长度(m)支撑缝长(m)裂缝总高度(m)支撑裂缝总高度(m)168.0 157.2 45.8 42.8