正交试验设计之方差分析课件.ppt

上传人(卖家):晟晟文业 文档编号:4146333 上传时间:2022-11-14 格式:PPT 页数:44 大小:614.07KB
下载 相关 举报
正交试验设计之方差分析课件.ppt_第1页
第1页 / 共44页
正交试验设计之方差分析课件.ppt_第2页
第2页 / 共44页
正交试验设计之方差分析课件.ppt_第3页
第3页 / 共44页
正交试验设计之方差分析课件.ppt_第4页
第4页 / 共44页
正交试验设计之方差分析课件.ppt_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、第一节:正交设计方差分析的步骤第二节:3水平正交设计的方差分析第三节:2水平正交设计的方差分析第四节:混合型正交设计的方差分析第五节:拟水平法的方差分析第六节:重复试验的方差分析第三讲:正交试验的方差分析计算离差的平方和:设用正交表安排m个因素的试验,试验总次数为n,试验的结果分别为x1,x2,xn.假定每个因素有na个水平,每个水平做a次试验,则n=ana.1)总离差的平方和ST记记为 其中ST反映了试验结果的总差异,它越大,说明各次试验的结果之间的差异越大。试验结果之所以有差异,一是由因素水平的变化所引起的,二是因为有试验误差。第一节:正交设计方差分析的步骤nkkxnx11211212)(

2、1)(nkknkknkkTxnxxxSPQSTTnkkTxQ1221)(1nkkxnP2)各因素离差的平方和下面以计算因素A的离差的平方和SA为例来说明。设因素A安排在正交表的某列,可看作单因素试验。用xij表示因素A的第i个水平的第j个试验的结果(i=1,2,na;j=1,2,a),则有由单因素的方差分析记为 其中Ki 表示因素的第i 个水平a次试验结果的和。SA反映了因素A的水平变化时所引起的试验结果的差异,即因素A对试验结果的影响。用同样的方法可以计算其它因素的离差平方和。对于两因素的交互作用,我们把它当作一个新的因素。如果交互作用占两列,则交互作用的离差的平方和等于这两列的离差的平方和

3、之和。比如 SAxB=S(AxB)1+S(AxB)2第一节:正交设计方差分析的步骤PQSAAaniiAKaQ121aninkkajijxx1112112112112)(11)(1)(1nkkniininiajijajijAxnKaxnxaSaaaajijixK13)试验误差的离差的平方和SE设S因+交为所有因素以及要考虑的交互作用的离差的平方和,因为 ST=S因+交+SE,所以 SE=ST-S因+交计算自由度:试验的总自由度 f总=试验总次数-1=n-1各因素的自由度 f因=因素的水平数-1=na-1两因素交互作用的自由度等于两因素的自由度之积fAxB=fA X fB试验误差的自由度fE=f总

4、-f因+交第一节:正交设计方差分析的步骤计算平均离差平方和(均方):在计算各因素离差平方和时,我们知道,它们都是若干项平方的和,它们的大小与项数有关,因此不能确切反映各因素的情况。为了消除项数的影响,我们计算它们的平均离差的平方和。因素的平均离差平方和=(因素离差的平方和)/因素的自由度=S因/f因试验误差的平均离差平方和=(试验误差的离差的平方和)/试验误差的自由度=SE/fE求F比:将各因素的平均离差的平方和与误差的平均离差平方和相比,得出F值。这个比值的大小反映了各因素对试验结果影响程度的大小。第一节:正交设计方差分析的步骤对因素进行显著性检验:给出检验水平,从F分布表中查出临界值F(f

5、因,fE)。将在“求 F 比”中算出的F值与该临界值比较,若F F(f因,fE),说明该因素对试验结果的影响显著,两数差别越大,说明该因素的显著性越大。第一节:正交设计方差分析的步骤第二节:3水平正交设计的方差分析例1(无交互作用):磁鼓电机是彩色录像机磁鼓组件的关键部件之一,按质量要求其输出力矩应大于210g.cm。某生产厂过去这项指标的合格率较低,从而希望通过试验找出好的条件,以提高磁鼓电机的输出力矩。根据工程技术人员的经验,取试验因素和相应水平如下表:第二节:3水平正交设计的方差分析解:(选用正交表L9(34)表头设计:试验计划与试验结果:第二节:3水平正交设计的方差分析9个试验点的分布

6、第二节:3水平正交设计的方差分析详细计算如下:2.1162.765278.3028663105196.4279.56866.14213.303294)328329273529308025(317.308553)260100430336235225(313.304288)252004352836308025(3178.302866)1651(919122CBATEkkTTCCBBAACBASSSSSPyPQSPQSPQSPQSQQQP第二节:3水平正交设计的方差分析列方差分析表如下:最佳条件的选择:对显著因子应取最好的水平对不显著因子的水平可以任意选取,在实际中通常从降低成本操作方便等角度加以选

7、择上面的例子中对因子A与B应选择A2B2,因子C可以任选,譬如为节约材料可选择C1第二节:3水平正交设计的方差分析验证试验:对A2B2C1进行三次试验,结果为:234,240,220,平均值为231.3.此结果是满意的例2(有交互作用):为提高某产品的产量,需要考虑3个因素:反应温度、反应压力和溶液浓度。每个因素都取3个水平,具体数值见表。考虑因素之间的所有一级交互作用,试进行方差分析,找出最好的工艺条件。第二节:3水平正交设计的方差分析解:(选用正交表L27(313)根据前面的公式作如下计算:第二节:3水平正交设计的方差分析22.375)23.3443.3398.32(91,22.375)2

8、7.3404.3333.33(91,20.375)30.3313.3321.34(91,33.375)04.3366.3494.32(91,68.375)61.3473.3130.34(91,89.375)93.3208.3263.35(91,00.531)16.5921.3527.6(91,29.376)88.3530.3146.33(91,17.377)21.3370.3073.36(91,13.375)64.100(271222)(222)(222)(222)(222)(222)(2222222222212121BXCBXCAXCAXCAXBAXBCBAQQQQQQQQQP由此得出类似地

9、最后计算总平方和,得出第二节:3水平正交设计的方差分析32.12,87.155,17.1,04.22121)()()()(PQQSSSPQSPQSPQSAXBAXBAXBAXBAXBCCBBAA18.0228.022121)()()()(PQQSPQQSBXCBXCBXCAXCAXCAXC34.0(20.16113.37533.53633.536)2712BXCAXCAXBCBATTETTkkTSSSSSSSSSSPQSSxQ交因用公式计算自由度:再用公式计算平均离差的平方和,然后计算F值,再与F分布表中查出的相应的临界值F(f因,fE)比较,判断各因素显著性的大小。通常,若F F0.01(f

10、因,fE),就称该因素是高度显著的,用两个星号表示;若F F0.05(f因,fE),则称该因素的影响是显著的,用一个星号表示;若FF0.05(f因,fE),就称该因素的影响是不显著的,不用星号表示。第二节:3水平正交设计的方差分析81826,261271,422,213交因总总fffnfxffffffEBXCAXCAXBCBA方差分析表:因为SAXC和SBXC都很小,和误差项合并,作为误差项。通过F值与临界值比较看出,因素A,B,C和交互作用AXB对试验的影响都是显著的,从F值的大小看,因素C最显著,以下依次为A,B,AXB第二节:3水平正交设计的方差分析方差分析(2):由于这里的试验指标是产

11、品的产量,越大越好,所以最优方案应取各因素中K的最大值所对应的水平。因素A应取第1水平,因素B应取第3水平,因素C应取第3水平。交互作用AXB也是显著的,但由于AXB占两列,直观分析法有些困难,因此把A和B的各种组合的试验结果对照起来分析。从表中看出,当A取第1水平、B取第3水平时,试验结果为13.17,是所有结果中的最大值,因此可取A1B3,这与前面单独考虑因素A,B时所得出的结果是一致的。于是,最优方案就取A1B3C3.第二节:3水平正交设计的方差分析2水平正交设计,各因素离差平方和为:因为 又所以上式可简化为这里2水平设计计算离差平方和的一般公式,同样适用于交互作用。第三节:2水平正交设

12、计的方差分析,)(1121212nkkiixnKaS因naan21,2211KKxnkk221)(1KKnS因例3:某农药厂生产某种农药,指标是农药的收率,显然是越大越好。据经验知道,影响农药收率的因素有4个:反应温度A,反应时间B,原料配比C,真空度D。每个因素都是两水平,具体情况见表。要考虑A,B的交互作用。试进行方差分析。第三节:2水平正交设计的方差分析解:(选用正交表L8(27)第三节:2水平正交设计的方差分析这里类似地计算误差平方和:SE=ST-(S因+S交)=146-(8+18+60.5+4.5+18)=5第三节:2水平正交设计的方差分析8)358366(81)(81146)724

13、(81656688222122812KKSTxPQSAkkTT50)372352(81,5.4)365359(81,5.60)373351(81,18)356368(812222AXBDCBSSSS计算自由度:计算均方值:由于各因素和交互作用AXB的自由度都是1,因此它们的均方值与它们各自的平方和相等。只有误差的均方为计算F比:第三节:2水平正交设计的方差分析257)(,1,112718交因ffffffffffffTEBAAXBDCBAT5.2252EESMS8.15.25.4,2.245.25.60,205.250,2.75.218,2.35.28DCAXBBEAAFFFFMSMSF方差分析

14、表:第三节:2水平正交设计的方差分析方差分析:从方差分析表中F值的大小看出,各因素对试验影响大小的顺序为 C,AXB,B,A,D。C影响最大,其次是交互作用AXB,D的影响最小.若各因素分别选取最优条件应当是C2,B1,A1,D2.但考虑到交互作用AXB的影响较大,且它的第2水平为好,在C2,(AXB)2的情况下,有B1A2和B2A1,考虑到B的影响比A大,而B选 B1为好,当然A只能选第2水平了。这样最后确定下来的最优方案应当是A2B1C2D2。这个方案不在正交表的9个试验中,可以按此进行试验,比较一下结果。第三节:2水平正交设计的方差分析混合型正交设计的方差分析,本质上与一般水平数相等正交

15、设计的方差分析相同,只要在计算时注意到各水平数的差别就行了。现以L8(4X24)混合型正交表为例:总离差平方和为因素偏差平方和有两种情况:2水平因素:4水平因素:第四节:混合型正交设计的方差分析281812)(81kkkkTTxxPQS221)(81KKS28124232221)(81)(21kkxKKKKS例4:某钢厂生产一种合金,为便于校直冷拉,需要进行一次退火热处理,以降低合金的硬度。根据冷加工变形量,在该合金技术要求范围内,硬度越低越好。试验的目的是寻求降低硬度的退火工艺参数。考察的指标是洛氏硬度(HR),经分析研究,要考虑的因素有3个:退火温度A,保温时间B,冷却介质C。第四节:混合

16、型正交设计的方差分析解:第四节:混合型正交设计的方差分析625.1,500.0)10.12410.126(81,125.1)60.12660.123(81,18.0)70.12550.124(81,645.2)80.12240.127(81)(81,445.0005.7825)89.400684.386841.385676.3918(21)(21,895.4,005.7825)04.62600(818,20.250,90.78295425242222124232221281812SSSSSSKKSPKKKKSPQSTPxTxQECBATTkkkkT方差分析表:从F值和临界值的比较看出,各因素均

17、无显著影响,相对来说,B的影响大些。为提高分析精度,我们只考虑因素B,把因素A,C都并入误差。这样一来,SE就变成SA+SC+S4+S5=0.445+0.18+1.125+0.500=2.250,再列方差分析表。第四节:混合型正交设计的方差分析方差分析表(2):临界值 F0.05(1,6)=5.99,F0.01(1,6)=13.75从F值和临界值的比较来看,因素B就是显著性因素了。因素影响从大到小的顺序为BCA,选定的最优方案应为A2B2C1第四节:混合型正交设计的方差分析例5:钢片在镀锌前要用酸洗的方法除锈。为了提高除锈效率,缩短酸洗时间,先安排酸洗试验。考察指标是酸洗时间。在除锈效果达到要

18、求的情况下,酸洗时间越短越好。要考虑的因素及其水平如表:选取正交表L9(34),将因素C虚拟1个水平。据经验知,海鸥牌比OP牌的效果好,故虚拟第2水平并安排在第1列。第五节:拟水平法的方差分析解:虚拟水平的因素C的第1水平重复3次,第二水平重复6次。因此,离差平方和为:其余因素的离差平方和为误差的离差平方和为:第五节:拟水平法的方差分析546624167876241)56169(919237,6787291912PQSTPxTxQTTkkkkT5.406241)22201(61)7744(3196322221TKKSC67.4026241)3721476111449(31786241)4900

19、82815776(3167.206241)608472255476(319)(312232221DABSSTKKKS16.4)(DABCTESSSSSS方差分析表:从F值和临界值比较看出,各因素均无显著影响,相对来说,因素D的影响大些。我们把影响最小的因素B并入误差,使得新的误差平方和为SE=SE+SB,再列方差分析表第五节:拟水平法的方差分析方差分析表(2):由此看出,因素D有显著影响,因素A,B均无显著影响。因素重要性的顺序为DCAB,最优方案为A3B1C2D3.第五节:拟水平法的方差分析重复试验就是对每个试验号重复多次,这样能很好地估计试验误差,它的方差分析与无重复试验基本相同。但要注意

20、几点:(1)计算K1,K2,时,要用各号试验重复n次的数据之和;(2)计算离差平方和时,公式中的“水平重复数”要改为“水平重复数与 重复试验数之积”;(3)总体误差的离差平方和SE由两部分构成:第一类误差,即空列误差SE1;第二类误差,即重复试验误差SE2;SE=SE1+SE2 fE=fE1+fE2(4)SE2的计算公式为其中r为各号试验的重复次数,n为试验号总数。fE2=n(r-1)ninirjijrjijExrxS11211221第六节:重复试验的方差分析例6:硅钢带取消空气退火工艺试验。空气退火能脱除一部分碳,但钢带表面会生成一层很厚的氧化皮,增加酸洗的困难。现欲取消这道工序,为此要做试

21、验。试验指标是钢带的磁性。本试验考虑2个因素,每个因素2个水平。退火工艺A:A1为进行空气退火,A2 为取消空气退火,成品厚度B,B1为0.20mm,B2为0.35mm。选用L4(23)正交表安排试验,每个试验号重复5次,试验结果列于后附表中。第六节:重复试验的方差分析第六节:重复试验的方差分析1716163.968.9083.516)15(48.90)14.1893(51)5.10.4.0.55.2(5121212222224125141512 EEEEEEEijijijijEfffSSSfxxS第六节:重复试验的方差分析方差分析表从方差分析的结果看出,取消空气退火工序对钢带磁性无显著影响,可以取消这个工序。第六节:重复试验的方差分析正交试验模型的判断:判断方法:2122111/eeeeeeMSMSfSfSF)(),()(),(211211找出交互作用改变模型无交互作用模型正确eeeeffFffF

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(正交试验设计之方差分析课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|