1、1本章讲述的内容第一节 发酵过程的代谢变化规律第二节 发酵工艺的控制第三节 发酵过程的主要控制参数2第一节 发酵过程的代谢变化规律 代谢变化代谢变化就是反映发酵过程中菌体的生长,发酵参数(培养基,培养条件等)和产物形成速率三者间的关系。了解生产菌种在具有合适的培养基、pH、温度和通气搅拌等环境条件下对基质的利用、细胞的生长以及产物合成的代谢变化,有利于人们对生产的控制。3代谢曲线代谢变化是反映发酵过程中菌体的生长,发酵参数(培养基,培养条件等)和产物形成速率三者间的关系。把它们随时间变化的过程绘制成图,就成为所说的代谢曲线。4发酵过程按进行过程有三种方式:分批发酵(Batch fermenta
2、tion)补料分批发酵(Fed-batch fermentation)连续发酵(Continuous fermentation)这节介绍分批发酵、补料分批发酵及连续发酵三种类型的操作方式下的代谢特征。51、分批发酵的定义 是指在一封闭系统内含有初始限量基质的发酵方式。在这一过程中,除了氧气、消泡剂及控制pH的酸或碱外,不再加入任何其它物质。发酵过程中培养基成分减少,微生物得到繁殖。一、分批发酵62、分批发酵的特点 微生物所处的环境在发酵过程中不断变化,其物理,化学和生物参数都随时间而变化,是一个不稳定的过程。7 优点 操作简单;操作引起染菌的概率低。不会产生菌种老化和变异等问题 缺点 非生产时
3、间较长、设备利用率低。3、分批发酵的优缺点84、分批发酵的生长曲线单细胞微生物9丝状真菌和放线菌105、分批发酵的类型 Gadens fermentation classification(按照菌体生长,碳源利用和产物生成的变化)第一类型 第二类型 第三类型 Pirets fermentation classification(按照产物生成与菌体生长是否同步)生长关联型(第一类型)生长无关联型(第二,三类型)11第一类型(生长关联型)n产物直接来源于产能的初级代谢(自身繁殖所必需的代谢),菌体生长与产物形成不分开。n例如单细胞蛋白和葡萄糖酸的发酵:产物合成的比速率菌体)产物成比例(:生长关联型
4、产物的形或QQPXdtdPPdtdPggx/12第二类型(部分生长关联型)产物也来源于能量代谢所消耗的基质,但产物的形成在与初级代谢分开的次级代谢中,出现两个峰,菌体生长进入稳定期,出现产物形成高峰。例如,柠檬酸和某些氨基酸的发酵。XdtdPPdtdPQXX13第三类型(非生长关联型)n产物是在基质消耗和菌体生长之后,菌体利用中间代谢反应来形成的,即产物的形成和初级代谢是分开的。n如抗生素发酵。XdtdPPdtdPQX14产物形成与生长有关,如酒精、某些酶等。):比生长速率()物的率(:菌体生长为基准的产)产物形成比速率(hYQYQggLhgxPPxPP1/:生长关联型(growth asso
5、ciated)15产物的形成速度与生长无关,只与细胞积累量有关。如,抗生素。):菌体浓度():产物合成速度(比例常数LgXhLgXdtdPdtdP/:非生长关联型non-growth associated 16分批发酵的分类对实践的指导意义分批发酵的分类对实践的指导意义从上述分批发酵类型可以分析:如果生产的产品是生长关联型(如菌体与初级代谢产物),则宜采用有利于细胞生长的培养条件,延长与产物合成有关的对数生长期;如果产品是非生长关联型(如次级代谢产物),则宜缩短对数生长期,并迅速获得足够量的菌体细胞后延长平衡期,以提高产量。17典型的分批发酵工艺流程18二、补料分批发酵二、补料分批发酵1、定义
6、 补料分批发酵又称半连续发酵或流加分批发酵,是指在分批发酵过程中,间歇或连续地补加新鲜培养基的发酵方式。192、补料分批发酵的优缺点 优点 使发酵系统中维持很低的基质浓度;和连续发酵比、不需要严格的无菌条件;不会产生菌种老化和变异等问题。缺点 存在一定的非生产时间;和分批发酵比,中途要流加新鲜培养基,增加了染菌的危险。203、补料分批发酵的类型 补料方式 连续流加 不连续流加 多周期流加 补料成分 单一组分流加 多组分流加 控制方式 反馈控制 无反馈控制21四、连续发酵1、定义 培养基料液连续输入发酵罐,并同时放出含有产品的相同体积发酵液,使发酵罐内料液量维持恒定,微生物在近似恒定状态(恒定的
7、基质浓度、恒定的产物浓度、恒定的pH、恒定菌体浓度、恒定的比生长速率)下生长的发酵方式。222、连续发酵的优缺点连续发酵的优缺点 优点 能维持低基质浓度;可以提高设备利用率和单位时间的产量;便于自动控制。缺点 菌种发生变异的可能性较大;要求严格的无菌条件。233、连续发酵的类型连续发酵的类型 恒化培养 使培养基中限制性基质的浓度保持恒定 恒浊培养 使培养基中菌体的浓度保持恒定244、连续发酵的代谢曲线连续发酵的代谢曲线从分批培养出发,无论在哪个时候开始加入新鲜培养基过渡到连续操作,达到一定的菌体浓度及限制基质浓度则培养系统一定能成为稳定状态。25第二节 发酵工艺的控制工艺条件控制的目的:就是要
8、为生产菌创造一个最适的环境,使我们所需要的代谢活动得以最充分的表达。26一、温度对发酵的影响及控制1、影响发酵温度的因素 产热因素:生物热 搅拌热 散热因素:蒸发热 辐射热27发酵热发酵热就是发酵过程中释放出来的净热量。Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射28 生物热:生物热是生产菌在生长繁殖时产生的大量热量。培养基中碳水化合物,脂肪,蛋白质等物质被分解为CO2,NH3时释放出的大量能量。用途:合成高能化合物,供微生物生命代谢活动 热能散发 影响生物热的因素:生物热随菌株,培养基,发酵时期的不同而不同。生物热的大小还与菌体的呼吸强度有对应关系。29实验发现抗生素高产量批号的生物热高于低产量批
9、号的生物热。说明抗生素合成时微生物的新陈代谢十分旺盛。1、抗生素相对活性为12、抗生素相对活性为0.5发酵过程中生物热的变化发酵过程中生物热的变化30在四环素发酵中,还发现生物热和菌的呼吸强度的变化有对应在四环素发酵中,还发现生物热和菌的呼吸强度的变化有对应关系,特别是在关系,特别是在8080小时以前。从此实验中还可看到,当产生的小时以前。从此实验中还可看到,当产生的生物热达到高峰时,糖的利用速度也最大。另外也有人提出,生物热达到高峰时,糖的利用速度也最大。另外也有人提出,可从菌体的耗氧率来衡量生物热的大小。可从菌体的耗氧率来衡量生物热的大小。四环素生物合成过程中系列参数的动态变化过程四环素生
10、物合成过程中系列参数的动态变化过程1 1:效价;:效价;2 2:呼吸强度;:呼吸强度;3 3:生物热;:生物热;4 4:糖浓度:糖浓度31 搅拌热:通风发酵都有大功率搅拌,搅拌的机械运动造成液体之间,液体与设备之间的摩擦而产生的热。Q搅拌=3600(P/V)3600:热功当量(kJ/(kW.h)(P/V):通气条件下单位体积发酵液所消耗的功率(kW/m3)32 蒸发热:通入发酵罐的空气,其温度和湿度随季节及控制条件的不同而有所变化。空气进入发酵罐后,就和发酵液广泛接触进行热交换。同时必然会引起水分的蒸发;蒸发所需的热量即为蒸发热。蒸发热的计算:Q蒸发=G(I2-I1)G:空气流量,按干重计算,
11、kg/h I1、I2:进出发酵罐的空气的热焓量,J/kg(干空气)33 辐射热:由于发酵罐内外温度差,通过罐体向外辐射的热量。辐射热可通过罐内外的温差求得,一般不超过发酵热的5%。34发酵热的测定(1)通过测定一定时间内冷却水的流量和冷却水进出口温度,由下式求得这段时间内的发酵热。35(2)通过罐温的自动控制,先使罐温达到恒定,再关闭自控装置测得温度随时间上升的速率S,按下式可求得发酵热:36 影响各种酶的反应速率和蛋白质性质 影响发酵液的物理性质 影响生物合成的方向。例如,四环素发酵中金色链霉菌同时能产生金霉素。在低于30 温度下,该菌种合成金霉素能力较强。当温度提高,合成四环素的比例也提高
12、。在温度达35则只产生四环素而金霉素合成几乎停止。2、温度对发酵的影响37发酵过程,微生物生长速率变化 dX/dt=X-X :比生长速率 :比死亡速率 当处于生长状态时,,可忽略。38 与 与温度有关 根据Arrenhnius公式 =Ae-E/RT =Ae-E/RT 通常E大于E,所以 比 对温度变化更为敏感。39 例:青霉菌生产青霉素 青霉菌生长活化能E=34kJ/mol 青霉素合成活化能E=112kJ/mol 青霉素合成速率对温度较敏感,温度控制相当重要。40最适温度是一种相对概念,是指在该温度下最适于菌的生长或发酵产物的生成。最适发酵温度与菌种,培养基成分,培养条件和菌体生长阶段有关。最
13、适发酵温度的选择 在发酵的整个周期内仅选一个最适培养温度不一定好。温度的选择要参考其它发酵条件。温度的选择还应考虑培养基成分和浓度3、最适温度的确定41 发酵罐:夹套(10M3以下)盘管(蛇管)(10M3以上)4、温度的控制42二、pH对发酵的影响及控制 发酵过程中培养液的pH值是微生物在一定环境条件下代谢活动的综合指标,是一项重要的发酵参数。它对菌体的生长和产品的积累有很大的影响。因此,必须掌握发酵过程中pH的变化规律,及时监测并加以控制,使它处于最佳的状态。尽管多数微生物能在34个pH单位的pH范围内生长,但是在发酵工艺中,为了达到高生长速率和最佳产物形成,必须使pH在很窄的范围内保持恒定
14、。431 1、pHpH值对微生物的生长繁殖和产物合成的影响值对微生物的生长繁殖和产物合成的影响 pH影响酶的活性 pH影响微生物细胞膜所带电荷的状态 pH影响培养基某些组分和中间代谢产物的离解 pH不同,往往引起菌体代谢过程的不同,使代谢产物的质量和比例发生改变442、发酵过程中pH的变化生长阶段生成阶段自溶阶段45碳源过量消泡油添加过量生理酸性物质的存在3、引起pH下降的因素46氮源过多生理碱性物质的存在中间补料,碱性物质添加过多4、引起pH上升的因素47原则:有利于菌体生长和产物的合成。一般根据实验结果确定。最适pH与菌株,培养基组成,发酵工艺有关。应按发酵过程的不同阶段分别控制不同的pH
15、范围。5、最适pH的选择48 最适pH与微生物生长,产物形成之间相互关系有四种类型:菌体比生长速率和产物比生产速率QP的最适pH在一个相似的较宽的范围内(比较容易控制);较宽,Qp范围较窄,或较窄,Qp范围较宽(难控制,应严格控制);和 Qp对pH都很敏感,其最适pH相同(应严格控制);更复杂,和 Qp对pH都很敏感,并有各自的最适pH(难度最大);49调节基础培养基的配方调节碳氮比(C/N)添加缓冲剂补料控制直接加酸加碱补加碳源或氮源6、pH的控制50n大多数发酵过程是好氧的,因此需要供氧。如果考虑呼吸的化学计量,则葡萄糖的氧化可由下式表示:C6H 12O6 十6O26H2O十6CO2 n只
16、有当这两种反应物均溶于水后,才对菌体有用。n氧在水中的溶解度比葡萄糖要小约6000倍左右(氧在水中的饱和度约为l0mg/L)。许多发酵的生产能力受到氧利用限制,因此氧成为影响发酵效率的重要因素。三、氧对发酵的影响511 1、发酵过程中氧的需求、发酵过程中氧的需求尽管考虑了呼吸的化学计量而使供氧问题得以正确评价,但由于未曾将转化为生物物质的碳加以考虑而使菌体的真实需氧情况难以表明。许多研究工作者已经考虑到氧、碳源、氮源转化为生物物质的总化学计量关系,并利用这样的关系来预测发酵的需氧情况。从这些测定结果发现菌体的需氧似乎完全取决于培养基中的碳源。52Darlington(1964)以C3.92H6
17、.5O1.94来表述100克酵母菌体(干重)的组分,并对由碳氢化合物和碳水化合物生产酵母推导得到如下方程式:OHCOOHCOOCH2294.15.692.32242.375.21.267.6OHCOOHCOCH2294.15.692.32289.322.3135.614.7根据Darlington方程式,可知同样生100g菌体,用碳氢化合物所需的氧约为用碳水化合物生产时的3倍。53Johnson(1964)得出如下方程:CBYAA为燃烧1g底物成CO2、H2O和NH3(如底物中有氮存在)所需氧的量,此值易于计算获得;B为燃烧1g菌体成CO2、H2O和NH3所需氧的量,如果菌体组分已知的话,则也
18、可计算获得。C为生产1克菌体所需氧的量;Y为1克底物转化成菌体的克数。因此,A/Y为燃烧生成1g菌体的底物所需的氧,而B为燃烧菌体所需氧的量;它们之间的差为C,即为转化底物成菌体所需氧的量。54将Johnson方程式应用于利用葡萄糖和烷烃生产酵母的下列方程式为:7.41/7.41/7.10133.33YYgmmolCgmmolC)(对烷烃)(对葡萄糖如果对葡萄糖来说Y值取50,而对烷烃来说Y值取100;则:C对葡萄糖 24.95 mmol氧/g菌体;C对烷烃 65.4 mmol氧/g菌体;55Mateles(1971)推导得一种碳源与需氧间关系的方程式,他假定代谢产物仅为菌体、CO2、H2O;
19、以及菌体的正常组分C为53、N为12、O为19%、H为7,则:碳源的分子量成量:与碳源有关的菌体生菌体形成的克数耗氧的克数MYMYOHC58.11683256Mateles利用此关系式对许多菌体利用各种基质所需的氧进行了计算 生长于不同基质上的不同微生物的需氧要求57上述方程式与生物物质的形成有关,并假定微生物除产生水、二氧化碳外,无其它产物形成。因此,这些方程仅能适用于菌体生产过程中预测氧的要求,而对菌体能形成其它产物的过程则需要加以修正。例如Cooney(1979)建议用下列方程式计算青霉素发酵:克数:形成的卞青霉素钠的:形成的干菌体克数成的卞青霉素钠的克数:消耗每克葡萄糖所形需氧的克数形
20、成每克卞青霉素钠所PXYYYYOPPOPXPOOP/6.053.0/:43.0/58但是,由于菌体的代谢是受发酵液中的溶氧浓度的影响,故简单地依据总需求来供氧是欠妥的。溶氧浓度对比摄氧率(QO2每克干菌体每小时所消耗的氧的毫摩尔数)用米氏型曲线表示。临界氧浓度(C临):指不影响菌体呼吸所允许的最低氧浓度,或微生物对发酵液中溶解氧浓度的最低要求。Dissolved Oxygen ConcentrationQO2Ccritical59 某些微生物的临界氧浓度602 2、溶氧对发酵的影响、溶氧对发酵的影响由此可知,只有使溶氧浓度高于其临界值,才能维持菌体的最大比摄氧率,得到最大的菌体合成量。如果溶氧
21、浓度低于临界值,则菌体代谢受到干扰。但是,发酵工业的目标是要得到菌体发酵的产物而不是菌体本身。因此,由氧饥饿而引起的细胞代谢干扰,可能对形成某些产物是有利的;同理,当提供的氧浓度远大于临界值时,虽对菌体形成无妨,但也许能刺激产物的形成;所以,某种产物形成的最佳条件可能不同于菌体生长的最佳通气条件。61根据需氧不同,可将初级代谢发酵分为:a.供氧充足条件下,产量最大;若供氧不足,合成受强烈抑制;如:谷氨酸,精氨酸,脯氨酸等 b.供氧充足条件下,可得最高产量;若供氧受限,产量受影响不明显;如:异亮氨酸,赖氨酸,苏氨酸等 c.若供氧受限,细胞呼吸受抑制时,才获得最大量产物;若供氧充足,产物形成反而受
22、抑制;如:亮氨酸,缬氨酸,苯丙氨酸等62 但在实际生产过程中需注意:溶解氧浓度过低(代谢异常,产量降低)溶解氧浓度过高(代谢异常,菌体提前自溶)63 实例一在对黄色短杆菌(Brevibacterium flavum)生物合成氨基酸进行研究时发现,溶氧浓度对相关的氨基酸的生物合成具有很大的影响。研 究 表 明:菌 体 的 临 界 溶 氧 浓 度 为0.01mg/L;并根据“安全”的程度予以考虑供氧的程度,也即把菌体的呼吸率作为最大呼吸率的一个组成部分。因此,氧安全值低于最大呼吸率就意味着其溶氧浓度低于临界值。64当溶氧浓度低于1.0时,谷氨酸和天冬氨酸族氨基酸合成受到影响,但苯丙氨酸,缬氨酸和亮
23、氨酸最佳合成的溶氧浓度分别为0.55、0.60和0.85。从合成途径中可知,谷氨酸和天冬氨酸族的氨基酸来自于三羧酸循环(TCA)的中间体,而苯丙氨酸、缬氨酸和亮氨酸来自于糖酵解的中间体,即来自于丙酮酸和磷酸稀醇式丙酮酸。65 Feren和Squires(1969)对顶头孢霉产生头孢菌素和卷曲霉素(Capreomycin)的研究即是一个氧对次级代谢影响的例子。他们的研究表明,头孢菌素产生菌的临界氧浓度在07的空气饱和度间;而对卷曲霉素产生菌则为1323。但就抑制抗生素生物合成的溶氧浓度来说,对头孢菌素为低于10-20;而对卷曲霉素则为8。因此,在生产头孢菌素时,应使其溶氧浓度远大于临界值,而在生
24、产卷曲霉素时,则应使其溶氧浓度低于临界值。实例二663、发酵过程的溶氧变化n发酵前期:由于微生物大量繁殖,需氧量不断大幅度增加,此时发酵前期:由于微生物大量繁殖,需氧量不断大幅度增加,此时需氧超过供氧,溶氧明显下降需氧超过供氧,溶氧明显下降 n发酵中后期,溶氧浓度明显地受工艺控制手段的影响,如补料的发酵中后期,溶氧浓度明显地受工艺控制手段的影响,如补料的数量、时机和方式等数量、时机和方式等 n发酵后期由于菌体衰老,呼吸减弱,溶氧浓度也会逐步上升,一发酵后期由于菌体衰老,呼吸减弱,溶氧浓度也会逐步上升,一旦菌体自溶,溶氧就会明显地上升旦菌体自溶,溶氧就会明显地上升 674 4、溶氧的控制、溶氧的
25、控制调节通风与搅拌(具体内容在通风发酵设备中介绍)限制基础培养基的浓度,使发酵器内的生物体浓度维持于适当水平;并以补料方式供给某些营养成分而控制菌体生长率和呼吸率。68四、四、CO2对发酵的影响及控制对发酵的影响及控制CO2是微生物的代谢产物,同时也是某些合成代谢的基质。它是细胞代谢的重要指标。在发酵过程中,CO2有可能对发酵有促进作用,也有可能有抑制作用。691、CO2对发酵的影响对发酵的影响CO2对菌体具有抑制作用,当排气中CO2的浓度高于4%时,微生物的糖代谢和呼吸速率下降。例如,发酵液中CO2的浓度达到1.610-1mol,就会严重抑制酵母的生长;当进气口CO2的含量占混合气体的80%
26、时,酵母活力与对照相比降低20%。70CO2对发酵也有影响对发酵促进。如牛链球菌发酵生产多糖,最重要的发酵条件是提供的空气中要含5%的CO2。对发酵抑制。如对肌苷、异亮氨酸、组氨酸、抗生素等发酵的抑制影响发酵液的酸碱平衡71 CO2及HCO3-主要是影响细胞膜的结构,导致膜的流动性及表面电荷密度发生改变,影响到细胞膜的输送效率,导致细胞生长受到抑制、形态发生改变。培养液中的CO2主要作用于细胞膜的脂质核心部位;HCO3-影响细胞膜的膜蛋白。2、CO2对发酵影响的机理对发酵影响的机理723、CO2的控制的控制CO2在发酵液中的浓度变化不像溶解氧那样有一定的规律。它的大小受到许多因素的影响,如细胞
27、的呼吸强度、发酵液的流变学特性、通气搅拌程度、罐压大小、设备规模等。在发酵过程中通常通过调节通风和搅拌来控制。73五、发酵过程中的泡沫及其控制1、泡沫的性质 泡沫是气体被分散在少量液体中的胶体体系。泡沫间被一层液膜隔开而彼此不相连通。发酵过程中所遇到的泡沫,其分散相是无菌空气和代谢气体,连续相是发酵液。74一类存在于发酵液的液面上,这类泡沫气相所占比例特别大,并且泡沫与它下面的液体之间有能分辫的界线。如在某些稀薄的前期发酵液或种子培养液中所见到的。另一种泡沫是出现在粘稠的菌丝发酵液当中。这种泡沫分散很细,而且很均匀,也较稳定。泡沫与液体间没有明显的波面界限,在鼓泡的发酵液中气体分散相占的比例由
28、下而上地逐渐增加。2、泡沫的类型75由外界引进的气流被机械地分散形成(通风、搅拌);发酵过程中产生的气体聚结生成(发泡性物质)。3、泡沫产生的原因76降低发酵设备的利用率增加了菌群的非均一性增加了染菌的机会导致产物的损失消泡剂会给后提取工序带来困难4、泡沫对发酵的不利影响77通气与搅拌的强度通气与搅拌的强度培养基的配比及原材料组成培养基的配比及原材料组成培养基的破坏程度培养基的破坏程度接种量的大小培养液本身性质的变化培养基灭菌的方法和操作染菌5、影响泡沫稳定的因素78不同搅拌速度和通气量对泡沫影响不同搅拌速度和通气量对泡沫影响79不同浓度蛋白质原科的起泡作用不同浓度蛋白质原科的起泡作用80灭菌
29、时间对泡沫稳定性的影响灭菌时间对泡沫稳定性的影响 816、发酵过程泡沫的变化827、发酵过程泡沫控制的方法 物理消沫法 化学消沫法83物理消泡法方方 法法罐内消沫法:罐外消沫法:原原 理理靠机械力引起强烈振动或者压力变化,促使泡沫破裂,或借机械力将排出气体中的液体加以分离回收。优优 点点不需要引进外界物质、节省原材料、减少污染机会缺缺 点点不能从根本众消除引起稳定泡沫的因素。84化学消泡法机机 理理n当泡沫的表层存在着由极性的表面活性物质形成双电层时,可以加入另一种具有相反电荷的表面活性剂,以降低泡沫的机械强曲或加入某些具有强极性的物质与发泡剂争夺液 膜上的空间,降低液膜强度,使泡沫破裂。n当
30、泡沫的液膜具有较大的表面粘度时,可以加入某些分子内聚力较小的物质,以降低液膜的表面粘度,使液膜的液体流失,导致泡沫破裂。85选择消泡剂的依据 对发酵过程无毒,对人、畜无害和不影响酶的生物合成。消泡作用迅速,效果高和持久性能好 能耐高压蒸气灭菌而不变性,在灭菌温库下对设备无腐蚀性或不形成腐蚀性产物。不影响以后的提取过程。消沫剂的来源多,价格低,添加装置简单。不干扰分析系统,如溶解氧、pH测定仪的探头。最好还能做到不影响氧的传递。86消泡剂的种类和性能 天然油脂:常用的有玉米油、米糠油、豆油、棉子油、鱼油及猪油等。聚醚类:在生产上应用较多的是聚氧丙烯甘油和聚氧乙烯氧丙烯甘油(又称泡敌)。高级醇类
31、十八醇是较常用的一种,可以单独或与载体起使用。据报导,它与冷榨猪油一起控制青男素发酵的泡沫,效果较好。聚二酵具有消沫效果持久的特点,尤其适用于霉菌发酵。硅酮类 硅酮类消沫剂主要是聚二甲基硅氧烷及其衍生物。87六、补料控制1、基质浓度对发酵的影响882、补料控制目的解除基质过浓的抑制解除产物的反馈抑制解除葡萄糖分解代谢阻遏效应89补充微生物能源和碳源的需要。补充菌体所需要的氮源。补充微量元素或无机盐。3 3、补料的内容、补料的内容90控制微生物的中间代谢,使之向着有利于产物积累的方向发展。为实现这一目标,在中间补料控制时,必须选择恰当的反馈控制参数和补料速率。4 4、补料的原则、补料的原则91
32、大多数补料分批发酵均补加生长限制性基质以经验数据或预测数据控制流加;以pH、尾气、溶氧、产物浓度等参数间接控制流加;以物料平衡方程,通过传感器在线测定的一些参数计算限制性基质的浓度,间接控制流加;用传感器直接测定限制性基质的浓度,直接控制流加。5 5、补料控制的策略、补料控制的策略926、补料控制参数的选择 为了有效地进行中间补料,必须选择恰当的反馈控制参数,以及了解这些参数与微生物代谢、菌体生长、基质利用以及产物形成之间的关系。采用最优的补科程序也是依赖于比生长曲线形态、产物生成速率及发酵的初始条件等情况。因此,欲建立分批补料培养的数学模型及选择最佳控制程序都必须充分了解微生物在发酵过程中的
33、代谢规律及对环境条件的要求。93 例如,在谷氨酸发酵过程中的某阶段,生产菌的摄氧率和基质消耗速率之间存在着线性关系。连续补料和分批补料发酵的比较)()(2mmolmmlOQsXOURK糖耗耗氧量947、补料速率的确定 优化补料速率也是补料控制中十分重要的一环,因为养分和前体需要维持适当的浓度,而它们则以不同的速率被消耗,所以补料速率要根据微生物对营养等的消耗速率及所设定的培养液中最低维持浓度而定。例如,用连续培养方法测定了在不同比生长速率下青霉素生产菌产黄青霉的碳、氯、氧、磷、硫和乙酸盐及菌最适生长所需的各种基质的补料速率。95七、厌氧发酵工艺要求与控制 发酵工业中,由于使用微生物不同,其代谢
34、规律不一样,因而有的是需氧发酵,有的是厌氧发酵,也称静置培养。例如:酒精、啤酒、丙酮、丁酵及乳酸等均是属于厌气发酵产品,其发酵设备因不需供氧,所以设备和工艺都较好氧发酵简单。固态发酵(如白酒);液态发酵(如酒精、丙酮、丁醇、乳酸、啤酒)。961、固态发酵 固态发酵主要是一些传统发酵工艺。例如生产大曲酒、麸曲酒就是典型的固态发酵。固态发酵中无菌要求不高,整个生产过程都是敞口操作。除原料蒸煮过程能起到灭菌作用外,空气、水、工具和场所,窖池等都存在大量的多种多样的微生物,并把这些微生物带到发酵原料中,它们与曲中的微生物一起协同作用,生产出丰富的香味物质,因此固体厌气发酵是多菌种的混合发酵。发酵过程中
35、,一般都采用比较低的温度,让糖化作用和发酵作用同时进行;即采用边糖化边发酵的工艺。当采用2030低温时,糖化酶作用缓慢,故糖化时间要延长。97固态发酵的温度控制 固态发酵的温度控制靠控制进窖温度和淀粉含量来解决。因在窖内部没有冷却或加热装置,这样只好把进窖温度控制得比较低(1822)。糖化进行缓慢,发酵也就缓慢,窖内升温慢些,酵母就不易衰老,发酵率就升高。进窖时原料淀粉含量不能太高,在发酵过程中一部分能量被放出,升高了发酵温度,一般发酵过程中,淀粉含量降低1.0时,酒醅温度实际约上升2左右。所以淀粉含量控制在1 4l 6,随气温的高低不同进行适当地调整。98固体发酵的pH控制 一般工厂用酸度表
36、示。酸度来自原料本身,曲和酒醅是最主要的。在发酵过程中酸度增加的原因,主要是杂菌的影响,淀粉浓度过高,糖化快,细菌生长繁殖快,造成酒醅酸度升高,也反过来影响酵母的生长,影响发酵,酸度低又影响糖化速度。因此控制酸度既适宜酵母生长又抑制了细菌生长。一般控制在1.42.0的酸度。99水分的控制 固体发酵中水份是微生物生长的条件,适当的水分是良好发酵的重要因素。但入窖水分过高,会引起糖化和发酵作用加快,升温过猛,使发酵不彻底;而水分过少,会引起酒醅发干,残余淀粉高,酸度过低,槽不柔软,影响发酵正常进行;一般大曲酒入窖水分为5357,小曲5762,因原料而异,冬天与夏天也不同。另一方面为了调整淀粉浓度,
37、增加疏松性,调节酸度,以利于微生物的生长繁殖,保持水在固态发酵时常常加入填充料、如谷壳等。1002、液态发酵 厌气发酵在液体状态下进行,液体发酵速度快,发酵完全,发酵周期短,原料利用率高,而且适于大规模机械化、连续化、自动化生产。液态厌气发酵对无菌要求较高,因此培养基必须经过灭菌,对发酵容器也要定期灭菌。在发酵过程中对pH、温度进行连续控制,中间分析也与好气发酵相似。101第三节第三节 发酵过程的参数检测发酵过程的参数检测物理参数化学参数生物参数102一、物理参数1、温度指发酵整个过程或不同阶段所维持的温度。温度的高低与下列参数有密切关系发酵中的酶反应速度菌体生长速度,产物合成速度氧在培养液中
38、的溶解度,传递速度103发酵罐维持的压力。罐内维持正压,可防止外界空气中杂菌的侵入,保证纯种培养。罐压的高低与氧,CO2在培养液中的溶解度有关,间接影响菌体代谢。罐压一般维持在0.20.5公斤。2、压力1043、搅拌转速是指搅拌器在发酵罐中转动速度。搅拌转速大小与发酵液的均匀性和氧在发酵液中的传递速率有关。105指搅拌器搅拌时所消耗的功率,常指每立方米发酵液所消耗的功率(kW/m3)。它的大小与溶氧传递系数KLa有关。4、搅拌功率106指单位时间内单位体积发酵液通入空气的体积。它的大小与氧的传递和其它控制参数有关。一般控制在0.11.0vvm之间5、空气流量107粘度大小可作为细胞生长或细胞形
39、态的标志之一。在发酵过程中通常用表观粘度表示。粘度的大小可改变氧传递的阻力。粘度的大小可表示相对菌体浓度。6、粘度108能及时反映单细胞生长状况。7、浊度109二、化学参数1、pH发酵过程中各种产酸,产碱生化反应的综合结果,与菌体生长和产物合成有重要的关系。pH的高低与菌体生长和产物合成有着重要的关系。110指发酵液中糖,氮,磷与重要营养物质的浓度。基质浓度的变化对产生菌的生长和产物的合成有重要影响,也是提高代谢产物产量的重要控制手段。2、基质浓度111氧是微生物体内一系列细胞色素氧化酶催化产能反应的最终电子受体,也是合成某些产物的基质。利用DO浓度的变化,可以了解微生物对氧利用的规律,反映发
40、酵的异常情况,是一个重要的控制参数。3、溶解氧(DO)浓度112培养基氧化还原电位是影响微生物生长及其生化活性的因素之一。4、氧化还原电位113 是发酵产物产量高低,代谢正常与否的重要参数,也是决定发酵周期长短的根据。5、产物浓度114尾气中O2浓度与生产菌的摄氧率和KLa有关。尾气中CO2是产生菌呼吸放出的CO2。从尾气中O2和CO2浓度的含量可以算出产生菌的摄氧率、呼吸商和发酵罐的供氧能力。从而了解产生菌的呼吸代谢规律。6、尾气O2浓度和CO2浓度115 菌体RNA,DNA含量,以及ATP,ADP,AMP体系,NAD(P)-NAD(P)H体系。分别表示菌体生长情况,能量代谢能力,生物合成能
41、力。7、其它参数116三、生物参数1、菌(丝)体浓度(生物量biomass)菌体浓度的大小和变化速度对生化反应有影响,特别是对抗生素等次级代谢产物的发酵,菌体浓度与培养液的粘度,DO都有关。117四、间接参数 根据发酵液的菌体量和单位时间的菌浓、溶氧浓度、基质浓度和产物浓度等参数的变化值,可分别计算出菌体的比生长速率、氧的比消耗速率、基质的比消耗速率和产物比生产速率。118摄氧率r:单位体积培养液每小时所消耗的氧量(mmol/L.h)1、摄氧率浓度:空气出口浓度:空气进口):发酵液体积():空气流量()出入出入OCOCQCCLWhLVXOVrW221/(2119呼吸强度QO2:单位重量的干菌体
42、每小时所消耗的氧量(mmol/g.h)2、呼吸强度:干菌体浓度摄氧率XrOXrQ:2120呼吸商RQ:发酵过程中氧的消耗比速与二氧化碳生成比速的商 3、呼吸商)或消耗速率(摩尔)或生成速率(摩尔OURCERQOQCORQOCO2222121物理参数物理参数122化学、生物参数化学、生物参数123 目前较常测定的参数有温度、罐压、空气流量、搅拌转速、pH、溶氧、基质浓度、菌体浓度(干重、离心压缩细胞体积%)等。不常测定的参数有氧化还原电位、粘度、尾气中的O2和CO2含量等。参数测定方法有:在线测定 取样测定(离线测定)124 参数在线测定的优点及问题优点:主要是及时、省力,且可从繁琐操作中解脱出
43、来,便于用计算机控制。问题:发酵液的性质复杂。一般培养液中同时存在三相,即液、气、固体不溶物或油;发酵要求纯种培养,培养基和有关设备需用高压蒸汽灭菌。因而要求使用的传感器能耐蒸汽灭菌,这给各种传感器的制造带来很大的困难。125发酵工业用的传感器应满足的要求 1)传感器能经受高压蒸汽灭菌;2)传感器及其二次仪表具有长期稳定性;3)最好能在过程中随时校正;4)探头材料不易老化,使用寿命长;5)探头安装使用和维修方便;6)解决探头敏感部位被物料(反应液)粘住、堵塞问题;7)价格合理,便于推广应用。126微生物生长代谢过程中的质量平衡微生物生长代谢过程中的质量平衡微生物反应微生物反应(生长代谢生长代谢
44、)过程中的碳平衡过程中的碳平衡微生物反应通式:微生物反应通式:碳源氮源碳源氮源O2菌体产物菌体产物CO2+H2O微生物代谢的化学分子反应可表示为:微生物代谢的化学分子反应可表示为:CHmOn+aNH3+bO2YcCHxOyNz+YcpCHuOvNw +(1-Yc-Ycp)CO2+dH2O Yc:是与碳相关的菌体得率,:是与碳相关的菌体得率,Ycp:是与碳相关的代调产物的得率。:是与碳相关的代调产物的得率。127根据反应平衡原理有:根据反应平衡原理有:aYcz+Ycpwb(1-Yc-Ycp+m/4-n/2)+(Ycp/4)(2v+3w-u)+(Yc/4)(2y+3z-x)dm/2+(Ycp/2)(3w-u)+(Yc/2)(3z-x)128