1、25.1 25.1 在重复试验中观察不确定现象在重复试验中观察不确定现象第第2525章章 随机事件的概率随机事件的概率 驶向胜利驶向胜利的彼岸的彼岸第第2 2课时课时 概率论的产生和发展概率论的产生和发展 概率论产生于十七世纪,本来是由保险概率论产生于十七世纪,本来是由保险事业的发展而产生的,但是来自于赌博者事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论问题的的请求,却是数学家们思考概率论问题的源泉。源泉。传说早在传说早在1654年,有一个赌徒梅累向当年,有一个赌徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很时的数学家帕斯卡提出一个使他苦恼了很久的问题:久的问题:“两个赌徒
2、相约赌若干局,谁两个赌徒相约赌若干局,谁先赢先赢 3局就算赢,全部赌本就归谁。但是当局就算赢,全部赌本就归谁。但是当其中一个人赢了其中一个人赢了 2局,另一个人赢了局,另一个人赢了1局的局的时候,由于某种原因时候,由于某种原因,赌博终止了。问:赌赌博终止了。问:赌本应该如何分法才合理?本应该如何分法才合理?”情景导入 帕斯卡是帕斯卡是17世纪著名的数学家,但世纪著名的数学家,但这个问题却让他苦苦思索了三年,三年后,这个问题却让他苦苦思索了三年,三年后,也就是也就是1657年,荷兰著名的数学家惠更年,荷兰著名的数学家惠更斯企图自己解决这一问题,结果写成了斯企图自己解决这一问题,结果写成了论赌博中
3、的计算论赌博中的计算一书,这就是概率论一书,这就是概率论最早的一部著作。最早的一部著作。近几十年来,随着科技的蓬勃发近几十年来,随着科技的蓬勃发展,概率论大量应用到国民经济、工农业展,概率论大量应用到国民经济、工农业生产及各学科领域。许多兴起的应用数学,生产及各学科领域。许多兴起的应用数学,如信息论、对策论、排队论、控制论等,如信息论、对策论、排队论、控制论等,都是以概率论作为基础的。都是以概率论作为基础的。指出下列事件中,哪些是不可能事件?哪指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?些是必然事件?哪些是随机事件?(2)手电筒的电池没电)手电筒的电池没电,灯泡发亮灯泡发
4、亮.(5)当)当 x 是实数时,是实数时,x 0;(6)一个袋内装有形状大小相同的一个白球)一个袋内装有形状大小相同的一个白球和一个黑球,从中任意摸出和一个黑球,从中任意摸出1个球则为白球个球则为白球 (3)在标准大气压下,水在温度)在标准大气压下,水在温度 时沸腾;时沸腾;c90 (4)直线)直线 过定点过定点 ;1xky0,1(1)某地)某地1月月1日刮西北风;日刮西北风;探究:投掷硬币时,国徽朝上的可能探究:投掷硬币时,国徽朝上的可能性有多大?性有多大?在同样条件下,随机事件可能发生,也可在同样条件下,随机事件可能发生,也可能不发生,那么它发生的可能性有多大呢?能不发生,那么它发生的可能
5、性有多大呢?这是我们下面要讨论的问题。这是我们下面要讨论的问题。实验:让学生以同桌为一小组,每人实验:让学生以同桌为一小组,每人抛掷抛掷50次,记录正面朝上的次数次,记录正面朝上的次数。探索新知抛掷次数(n)2048404012000300002400072088正面朝上数正面朝上数(m)106120486019149841201236124频率(m/n)0.5180.5060.5010.49960.50050.5011历史上曾有人作过抛掷硬币的大量重复实验,历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示结果如下表所示抛掷次数n频率m/n0.5120484040120002400030
6、00072088实验结论:当抛硬币的次数很多时当抛硬币的次数很多时,出现下面的频率值是出现下面的频率值是稳定的稳定的,接近于常数接近于常数0.5,在它附近摆动在它附近摆动.随机事件在一次试验中是否随机事件在一次试验中是否发生虽然不能事先确定,但是在发生虽然不能事先确定,但是在大量重复大量重复试验的情况下,它的发试验的情况下,它的发生呈现出一定的生呈现出一定的规律性规律性出现的出现的频率值接近于常数频率值接近于常数.某批乒乓球产品质量检查结果表:某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率当抽查的球数很多时,抽到优等品的频率 接近于常数接近于常数0.95,在它附近摆动。,在
7、它附近摆动。nm0.9510.9540.940.970.920.9优等品频率优等品频率200010005002001005019029544701949245优等品数优等品数nmnm抽取球数抽取球数 很多很多常数常数某种油菜籽在相同条件下的发某种油菜籽在相同条件下的发芽试验结果表:芽试验结果表:当试验的油菜籽的粒数很多时,油菜籽发芽当试验的油菜籽的粒数很多时,油菜籽发芽的频率的频率 接近于常数接近于常数0.9,在它附近摆动。,在它附近摆动。nm很多很多 常数常数事件事件A的概率的定义的概率的定义:一般地,在一般地,在大量重复大量重复进行同一试进行同一试验时,事件验时,事件 发生的频率发生的频率
8、 (n(n为实验为实验的次数的次数,m,m是事件发生的频数是事件发生的频数)总是接总是接近于某个近于某个常数常数,在它附近摆动,这时,在它附近摆动,这时就把这个常数叫做事件就把这个常数叫做事件 的的概率概率,记,记做做 pAPnmAA由定义可知由定义可知:(1)求一个事件的概率的基本方法是通)求一个事件的概率的基本方法是通过大量的重复试验;过大量的重复试验;(3)概率是频率的)概率是频率的稳定值稳定值,而频率是概,而频率是概率的率的近似值近似值;(4)概率反映了随机事件发生的)概率反映了随机事件发生的可能性可能性的大小;的大小;(5)必然事件的概率为)必然事件的概率为1,不可能事件的,不可能事
9、件的概率为概率为0因此因此 10AP (2)只有当频率在某个常数附近摆动时,)只有当频率在某个常数附近摆动时,这个常数才叫做事件这个常数才叫做事件A 的概率;的概率;例:对一批衬衫进行抽查,结果如下表:例:对一批衬衫进行抽查,结果如下表:抽取件数抽取件数n 50 100 200 500 800 1000优等品件数优等品件数m 42 88 176 445 724 901优等品频率优等品频率m/n0.840.880.880.890.9010.905求抽取一件衬衫是优等品的概率约是多少?求抽取一件衬衫是优等品的概率约是多少?抽取衬衫抽取衬衫2000件,约有优质品几件?件,约有优质品几件?掌握新知某射
10、手进行射击,结果如下表所示:某射手进行射击,结果如下表所示:射击次数射击次数n 击中靶心次数击中靶心次数m 击中靶心频率击中靶心频率m/n例例填表填表(2)这个射手射击一次,击中靶心这个射手射击一次,击中靶心的概率是多少?的概率是多少?.(3)这射手射击这射手射击1600次,击中靶心的次数是次,击中靶心的次数是。8000.65 0.580.52 0.51 0.55概率为概率为概率为概率为概率为概率为概率为概率为概率为概率为 10AP可以看到事件发生的可能性可以看到事件发生的可能性越大越大概率就越接近概率就越接近1;反之反之,事事件发生的可能性越小件发生的可能性越小概率就概率就越接近越接近01.
11、给出以下结论,错误的有()给出以下结论,错误的有()如果一件事发生的机会只有十万分之一,如果一件事发生的机会只有十万分之一,那么它就不可能发生如果一件事发生那么它就不可能发生如果一件事发生的机会达到的机会达到995%,那么它就必然发生,那么它就必然发生如果一件事不是不可能发生的,那么它就如果一件事不是不可能发生的,那么它就必然发生如果一件事不是必然发生的必然发生如果一件事不是必然发生的,那么它就不可能发生,那么它就不可能发生A1个个 B2个个 C3个个D4个个D巩固练习2一位保险推销员对人们说:一位保险推销员对人们说:“人有可人有可能得病,也有可能不得病,因此,得病与能得病,也有可能不得病,因
12、此,得病与不得病的概率各占不得病的概率各占50%”他的说法()他的说法()A正确正确B不正确不正确C有时正确,有时不正确有时正确,有时不正确D应由气候等条件确定应由气候等条件确定B3.3.对某电视机厂生产的电视机进行抽样对某电视机厂生产的电视机进行抽样检测的数据如下:检测的数据如下:抽取抽取台数台数501002003005001000优等优等品数品数4092192285478954(1)计算表中优等品的各个频率;)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?)该厂生产的电视机优等品的概率是多少?解:各次优等品频率依次为解:各次优等品频率依次为 优等品的概率为:优等品的概率为:0.950.8,0.92,0.96,0.95,0.956,0.954甲得分的情况甲得分的情况乙得分的情况乙得分的情况610650211随机事件的概念随机事件的概念2随机事件的概率的定义随机事件的概率的定义 10AP 在一定条件下可能发生也可能不发生的在一定条件下可能发生也可能不发生的事件,叫做随机事件事件,叫做随机事件 在在大量重复大量重复进行同一试验时,进行同一试验时,事件事件 发发生的频率生的频率 总是接近于某个总是接近于某个常数常数,在它附近,在它附近摆动,这时就把这个常数叫做事件摆动,这时就把这个常数叫做事件 的概的概率率nmAA归纳小结