1、PABCDEF.1.前面我们已经学习了图形的哪些变换?前面我们已经学习了图形的哪些变换?w相似:相似比相似:相似比.w平移:平移的方向平移:平移的方向,平移的距离平移的距离.注:图形这些不同的变换是我们学习几何必不可少的重要注:图形这些不同的变换是我们学习几何必不可少的重要工具工具,它不但装点了我们的生活它不但装点了我们的生活,而且是学习后续知识的基础而且是学习后续知识的基础.回顾与反思w下面请欣赏如下图形的变换下面请欣赏如下图形的变换w旋转:(中心对称)旋转中心旋转:(中心对称)旋转中心,旋转方向旋转方向,旋转角度旋转角度.w轴对称:对称轴轴对称:对称轴,观察与思考 下列图形中,每个图中的四
2、边形下列图形中,每个图中的四边形ABCD和四边形和四边形ABCD都是相似图形都是相似图形.分别观察这五个图,你发现每个图中的两个四边分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?对应边有何位置关系?形各对应点的连线有什么特征?对应边有何位置关系?概念与性质1 1位似图形的概念位似图形的概念如果两个图形不仅如果两个图形不仅相似相似,而且每组对应点所在的,而且每组对应点所在的直线都直线都经过同一点经过同一点,对应边互相平行或者共线对应边互相平行或者共线,那那么这样的两个图形叫做么这样的两个图形叫做位似图形位似图形,这个点叫做位似这个点叫做位似中心中心.这时两个相似图形的相似
3、比又叫做它们的这时两个相似图形的相似比又叫做它们的位位似比似比.相似相似对应点的连线相交一点对应点的连线相交一点对应边平行或者共线对应边平行或者共线 作出下列位似图形的位似中心:OO判断下面的正方形是不是位似图形?判断下面的正方形是不是位似图形?(1)不是不是ACDBFEG显然,位似图形是相似图形的特殊情形显然,位似图形是相似图形的特殊情形.相相似图形不一定是位似图形,可位似图形一定似图形不一定是位似图形,可位似图形一定是相似图形是相似图形 观察下图中的五个图,回答下列问题:观察下图中的五个图,回答下列问题:(1)在各图中,位似图形的位似中心与这两个图形有什么位置关)在各图中,位似图形的位似中
4、心与这两个图形有什么位置关系?系?位似中心可以在两个图形的同侧,或两个图形之间,或位似中心可以在两个图形的同侧,或两个图形之间,或图形内还可以在一个图形的边上或顶点图形内还可以在一个图形的边上或顶点.议一议观察下图中的五个图,回答下列问题:观察下图中的五个图,回答下列问题:(2)在各图中,任意一对对应点到位似中心的距离比与位似比有)在各图中,任意一对对应点到位似中心的距离比与位似比有什么关系?什么关系?位似图形上任意一对对应点到位似中心的距离之比等位似图形上任意一对对应点到位似中心的距离之比等于位似比于位似比.议一议2.2.位似图形的性质位似图形的性质 (2 2)位似图形上任意一对对应点到位似
5、中心的)位似图形上任意一对对应点到位似中心的距离之比距离之比等于等于相似比相似比.概念与性质(3)位似图形中的)位似图形中的对应线段平行对应线段平行(或在一条直线上)(或在一条直线上).(1)位似图形是相似图形,具备相似图形的所有性质)位似图形是相似图形,具备相似图形的所有性质 若若ABCABC与与ABCABC的相似比为的相似比为:1:2,则则OA:OA A=()。)。OAABCBC1:2DEFAOBCDEFOABC利用位似可以把一个图形放大或缩小利用位似可以把一个图形放大或缩小1 1如图,已知如图,已知ABCABC和点和点O.O.以以O O为位为位似中心,求作似中心,求作ABCABC的位似图
6、形,并把的位似图形,并把ABCABC的边长扩大到原来的两倍的边长扩大到原来的两倍.图形与画法 如果把位似图形放到直角体系中,又如何去探究位似变换与坐标之间的关系呢?画位似图形的画位似图形的步骤有哪些?步骤有哪些?BAxyBAo在平面直角坐标系中在平面直角坐标系中,有两点有两点A(6,3),B(6,0),A(6,3),B(6,0),以原以原点点O O为位似中心为位似中心,相似比为相似比为1:3,1:3,把线段把线段ABAB缩小缩小.A(2,1),B(2,0)观察对应点之间的坐标的变化观察对应点之间的坐标的变化,你有什么发现你有什么发现?位似变换与坐标BAxyBAo在平面直角坐标系中在平面直角坐标
7、系中,有两点有两点A(6,3),B(6,0),A(6,3),B(6,0),以以原点原点O O为位似中心为位似中心,相似比为相似比为1:3,1:3,把线段把线段ABAB缩小缩小.A(2,1),B(2,0)ABA(-2,-1),B(-2,0)在平面直角坐标系中在平面直角坐标系中,如果位似变换是以原如果位似变换是以原点为位似中心点为位似中心,相似比为相似比为k,k,那么位似图形对那么位似图形对应点的坐标的比等于应点的坐标的比等于k k或或-k.-k.观察对应点之间的坐标的变化观察对应点之间的坐标的变化,你有什么发现你有什么发现?在平面直角坐标系中,在平面直角坐标系中,如果位似变换是以原点为位似中心,
8、如果位似变换是以原点为位似中心,相似比为相似比为k k,那么位似图形对应点的坐标的比等于那么位似图形对应点的坐标的比等于k k或或-k-k例如:点例如:点A(x,y)A(x,y)的对应点为的对应点为AA,则,则AA点的点的坐标可以这样确定坐标可以这样确定归纳:x xA=x=xAk k,y yA=y=yAk kx xA=x=xA(-k)(-k),y yA=y=yA(-k)(-k)或或即即AA(kx,kykx,ky)即即AA(-kx,-kx,-kyky)ABCABC三个顶点坐标分别为三个顶点坐标分别为A(2,3)A(2,3),B(2,1)B(2,1),C(6,2)C(6,2),以点,以点O O为位
9、似中心,为位似中心,相似比为相似比为2 2,将,将ABCABC放大,点放大,点A A的对的对应点应点AA的坐标为的坐标为_A(4,6)或(或(-4,-6)xyo例题例题.在平面直角坐标系中在平面直角坐标系中,四边形四边形ABCDABCD的四个顶点的坐标的四个顶点的坐标分别为分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个画出它的一个以原点以原点O O为位似中心为位似中心,相似比为相似比为1/21/2的位似图形的位似图形.A(-3,3),B(-4,1),C(-2,0),D(-1,2)BACDABCD
10、你还有其他办法吗你还有其他办法吗?试试看试试看.xyoB如图表示如图表示AOBAOB和把它缩小后得到的和把它缩小后得到的COD,COD,写出它们的写出它们的相似比相似比ACD练一练练一练:回味无穷 位似图形的概念:位似图形的概念:如果两个图形不仅形状相同如果两个图形不仅形状相同,而且所在的直线都而且所在的直线都经过同一个点经过同一个点,对应边互相平行,那么这样的两个图对应边互相平行,那么这样的两个图形叫做形叫做位似图形位似图形,这个点叫做这个点叫做位似中心位似中心,这时的相似这时的相似比又称为比又称为位似比位似比.位似图形的性质:位似图形的性质:1 1.位似图形是相似图形,具备相似图形的所有性质位似图形是相似图形,具备相似图形的所有性质 2.2.位似图形上的任意位似图形上的任意一对对应点一对对应点到到位似中心位似中心的的距离距离之比之比等于等于位似比位似比 3.3.位似图形中的位似图形中的对应线段平行对应线段平行(或在一条直线上)(或在一条直线上).课堂小结