1、 第1讲导数的概念及运算A 2函数f(x)的导函数若f(x)对于区间(a,b)内任一点都可导,则f(x)在各点的导数也随着自变量x的变化而变化,因而也是自变量x的函数该函数称为f(x)的导函数,记作f(x)(x0,f(x0)3基本初等函数的导数公式基本初等函数导函数f(x)C(C为常数)f(x)f(x)xn(nQ*)f(x)f(x)sin xf(x)f(x)cos xf(x)f(x)exf(x)f(x)ax(a0,a1)f(x)0nxn1cos xsin xexaxln af(x)g(x)f(x)g(x)f(x)g(x)辨 析 感 悟 1对导数概念的理解(1)f(x0)是函数yf(x)在xx0
2、附近的平均变化率 ()(2)f(x0)与f(x0)表示的意义相同()2对导数的几何和物理意义的理解(3)曲线的切线不一定与曲线只有一个公共点()(4)物体的运动方程是s4t216t,在某一时刻的速度为0,则相应时刻t0.()(5)曲线yf(x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线相同()感悟提升1一个区别曲线yf(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:曲线yf(x)在点P(x0,y0)处的切线是指P为切点,切线唯一,若斜率存在时,切线的斜率kf(x0);曲线yf(x)过点P(x0,y0)的切线,是指切线经过P点,点P可以是切点,也可以不
3、是切点,而且这样的直线可能有多条 2三个防范一是并不是所有的函数在其定义域上的每一点处都有导数,如函数y|x|在x0处就没有导数二是曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别,如(3)三是对函数求导要看准自变量,是对自变量的求导,而不是对其它参数的求导,如(6)规律方法(1)进行导数运算时,要牢记导数公式和导数的四则运算法则,切忌记错记混(2)求导前应利用代数、三角恒等变形将函数先化简,然后求导,这样可以减少运算量,提高运算速度,减少差错 考点二利用导数的几何意义求曲线的切线 方程【例2】已知函数f(x)x34x25x4.(1)求曲线f(x)在点(2,f(2)
4、处的切线方程;(2)求经过点A(2,2)的曲线f(x)的切线方程审题路线(1)求f(x)求f(2)求f(2)由点斜式写出切线方程(2)设切点P(x0,y0)求f(x0)由点斜式写出过点A的切线方程把点P代入切线方程求x0再代入求得切线方程 规律方法 利用导数的几何意义求曲线的切线方程时,注意区分是曲线在某点处的切线,还是过某点的切线曲线yf(x)在点P(x0,f(x0)处的切线方程是yf(x0)f(x0)(xx0)求过某点的切线方程时需设出切点坐标,进而求出切线方程【训练2】(1)(2014扬州期末)设a为实数,函数f(x)x3ax2(a3)x的导函数为f(x),且f(x)是偶函数,则曲线yf
5、(x)在原点处的切线方程为_(2)曲线yx(3ln x1)在点(1,1)处的切线方程为_考点三利用曲线的切线方程求参数【例3】(2013新课标全国卷改编)设函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.求a,b的值解f(x)aexex(axb)2x4ex(axab)2x4,f(0)ab44,又f(0)b4,a4.规律方法 已知曲线在某点处的切线方程求参数,是利用导数的几何意义求曲线的切线方程的逆用,解题的关键是这个点不仅在曲线上也在切线上.1在对导数的概念进行理解时,特别要注意f(x0)与(f(x0)是不一样的,f(x0)代表函数f(x)在xx0处
6、的导数值,不一定为0;而(f(x0)是函数值f(x0)的导数,而函数值f(x0)是一个常量,其导数一定为0,即(f(x0)0.2对于函数求导,一般要遵循先化简再求导的基本原则求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误 易错辨析3求曲线切线方程考虑不周【典例】(2014杭州质检)若存在过点O(0,0)的直线l与曲线f(x)x33x22x和yx2a都相切,则a的值是_错解 点O(0,0)在曲线f(x)x33x22x上,直线l与曲线yf(x)相切于点O.则kf(0)2,直线l的方程为y2x.又直线l与曲线yx
7、2a相切,x2a2x0满足44a0,a1.答案1 错因(1)片面理解“过点O(0,0)的直线与曲线f(x)x33x22x相切”这里有两种可能:一是点O是切点;二是点O不是切点,但曲线经过点O,解析中忽视后面情况(2)本题还易出现以下错误:一是O(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l的方程,导致解题复杂化,求解受阻 正解 易知点O(0,0)在曲线f(x)x33x22x上,(1)当O(0,0)是切点时,同上面解法 防范措施(1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P处的切线与在点P处的切线的差异(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算