全等三角形判定(ASA和AAS)教学课件.ppt

上传人(卖家):晟晟文业 文档编号:4345677 上传时间:2022-12-01 格式:PPT 页数:28 大小:417.22KB
下载 相关 举报
全等三角形判定(ASA和AAS)教学课件.ppt_第1页
第1页 / 共28页
全等三角形判定(ASA和AAS)教学课件.ppt_第2页
第2页 / 共28页
全等三角形判定(ASA和AAS)教学课件.ppt_第3页
第3页 / 共28页
全等三角形判定(ASA和AAS)教学课件.ppt_第4页
第4页 / 共28页
全等三角形判定(ASA和AAS)教学课件.ppt_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、1两边和它们的两边和它们的夹角夹角对应相等的两个三角形全对应相等的两个三角形全等(等(SAS)复习回顾:复习回顾:我们前面学习了哪几种判定三角形全等的方我们前面学习了哪几种判定三角形全等的方法法SASSSS2继续探讨三角形全等的条件:继续探讨三角形全等的条件:两角一边两角一边思考:已知一个三角形的两个角和一条边,那么两个角思考:已知一个三角形的两个角和一条边,那么两个角与这条边的位置上有几种可能性呢?与这条边的位置上有几种可能性呢?ABCABC图图1图图2在图在图1中,中,边边AB是是AA与与B的夹边,的夹边,在图在图2中,中,边边BC是是A A的对的对边,边,我们称这种位置关系我们称这种位置

2、关系为为两角夹边两角夹边 我们称这种位置关系为我们称这种位置关系为两角及其中一角的对边。两角及其中一角的对边。3 二、合作探究二、合作探究 (一)探究一:(一)探究一:已知两个角和一条线段,以这已知两个角和一条线段,以这两个角为内角,两个角为内角,以这条线段为这两个角的夹边,以这条线段为这两个角的夹边,画一个三角形画一个三角形 把你画的三角形与把你画的三角形与小组其他组员小组其他组员画的三角形进画的三角形进行比较,所有的三角形都全等吗?行比较,所有的三角形都全等吗?都全等都全等45303 cm 换两个角和一条线段,试试看,是否有同样的换两个角和一条线段,试试看,是否有同样的结论结论4如何用符号

3、语言来表达呢如何用符号语言来表达呢?证明证明:在在ABC与与A B C 中中A=A AB=A BABC ABC(ASA)ACBACB B=B两角和它们的夹边分别相等的两角和它们的夹边分别相等的两个三角形全等两个三角形全等(ASA).(ASA).5在在ABC和和DEF中,中,A=D,B=E,BC=EF,ABC和和DEF全等吗?为什么?全等吗?为什么?ACBEDF探索探索分析:分析:能否转化为能否转化为ASA?证明:证明:A=D,B=E(已知已知)C=F(三角形内角和定理三角形内角和定理)B=E 在在ABC和和DEF中中BC=EF C=FABC DEF(ASA)你能从上题中得到什么结论?你能从上题

4、中得到什么结论?两角及一角的对边对应相等的两角及一角的对边对应相等的两个三角形全等(两个三角形全等(AASAAS)。)。6如何用符号语言来表达呢如何用符号语言来表达呢?证明证明:在在ABC与与A B C 中中A=AABC ABC(AAS)ACBACB B=BBC=B C7判定判定3:判定判定4:(ASA)(AAS)归纳归纳8判定三角形全等判定三角形全等你有哪些方法?你有哪些方法?9下列条件能否判定下列条件能否判定ABC DEF.(1)A=E AB=EF B=D(2)A=D AB=DE B=E试一试试一试请先画图试试看请先画图试试看10如图如图,小明不慎将一块三角形模具打碎为两块小明不慎将一块三

5、角形模具打碎为两块,他是否可他是否可以只带其中的一块碎片到商店去以只带其中的一块碎片到商店去,就能配一块与原来一就能配一块与原来一样的三角形模具吗样的三角形模具吗?如果可以如果可以,带哪块去合适带哪块去合适?你能说明其中理由吗你能说明其中理由吗?怎么办?可以帮帮怎么办?可以帮帮我吗?我吗?AB111、如图,已知、如图,已知AB=DE,A=D,,B=E,则,则ABC DEF的理由是:的理由是:2、如图,已知、如图,已知AB=DE,A=D,,C=F,则,则ABC DEF的理由是:的理由是:ABCDEF12例例1 1、如图、如图 ,AB=AC,B=C,AB=AC,B=C,那么那么ABEABE和和AC

6、DACD全等全等吗?为什么?吗?为什么?证明证明:在在ABE与与ACD中中 B=C (已知)(已知)AB=AC (已知)(已知)A=A (公共角)(公共角)ABE ACD(ASA)AEDCB131.如图,如图,AD=AE,B=C,那么,那么BE和和CD相等相等么?为什么?么?为什么?证明证明:在在ABEABE与与ACDACD中中 B=C B=C (已知)(已知)A=A A=A (公共角)(公共角)AE=AD AE=AD (已知)(已知)ABE ABE ACDACD(AASAAS)BE=CD BE=CD (全等三角形对应边相等(全等三角形对应边相等)AEDCBBE=CDBE=CD你还能得出其他你

7、还能得出其他什么结论?什么结论?O14 例例2.如图如图,O是是AB的中点,的中点,=,与与 全等吗全等吗?为什么?为什么?ABAOCBODOABCD两角和夹两角和夹边对应相边对应相等等15ABCDO1234 如图:已知如图:已知ABC=DCBABC=DCB,3=43=4,求证求证:(1)ABCDCB。(2)1=21=2例例3 316练习练习1 已知:如图,已知:如图,AB=A C,A=A,B=C 求证:求证:ABE A CD _ ()_ ()_ ()证明:在证明:在 和和 中中_ _()CDAABEA=A 已知已知AB=AC 已知已知B=C 已知已知ABE ACD ASA ABE ACD17

8、1、如图:已知、如图:已知ABDE,ACDF,BE=CF。求证:。求证:ABC DEF。ABCDEF考考你考考你证明:证明:BE=CF(已知已知)BC=EF(等式性质等式性质)B=E 在在ABC和和DEF中中BC=EF C=FABC DEF(ASA)ABDE ACDF(已知已知)B=DEF ,ACB=F18你能行吗你能行吗?AB=DE可以吗?可以吗?ABDE19A=D(已知(已知)AB=DE(已知(已知)B=E(已知(已知)在在ABC和和DEF中中 ABC DEF(ASA)FEDCBA知识梳理知识梳理:20知识梳理知识梳理:在在ABC和和DFE中中,当当A=D,C=F和和AB=DE时时,能否得

9、到能否得到 ABC DFE?21(1)(1)两角和它们的夹边对应相等的两个三角形全等两角和它们的夹边对应相等的两个三角形全等.简写成简写成“角边角角边角”或或“ASAASA”.”.(2)(2)两角和其中一角的对边对应相等的两个三角形全等两角和其中一角的对边对应相等的两个三角形全等.简写成简写成“角角边角角边”或或“AASAAS”.”.知识要点:知识要点:(3 3)探索三角形全等是证明线段相等(对应边相等),)探索三角形全等是证明线段相等(对应边相等),角相等(对应角相等)等问题的基本途径。角相等(对应角相等)等问题的基本途径。:要学会用分类的思想,转化的思想解决问题。要学会用分类的思想,转化的

10、思想解决问题。2223ABEACDBCABCEDOCBACAB AAACDABE)(ASA,ACDABEQ中和在ACDABEADAE ACAB QAEACADABCEBD 24相等吗?与,那么且,于,于中,已知DCBDCFBEFADCFEADBEABC.3DABCEFADCFADBE,证明:Q垂直的定义)(90CFDBED中和在CDFBDEQ(已证)CFDBED(对顶角相等)CDFBDE(已知)CFBE)(AASCDFBDE等)(全等三角形对应边相CDBD 25ABCDE124、如图,已知、如图,已知CE,12,ABAD,ABC和和ADE全等吗?为什么?全等吗?为什么?解:解:ABC和和ADE

11、全等。全等。12(已知)(已知)1DAC2DAC即即BACDAE在在ABC和和ADC 中中 (已知)(已知)(已证)(已证)(已知)(已知)ADABDAEBACEC ABC ADE(AAS)26DCBA5、在、在ABC中,中,AB=AC,AD是边是边BC上的中线,证明:上的中线,证明:BAD=CAD证明:证明:AD是是BC边上的中线边上的中线BDCD(三角形中线的定义)(三角形中线的定义)在在ABD和和ACD中中 )AD(AD)CD(BD)AC(AB公公共共边边已已证证已已知知 ABD ACD(SSS)BAD=CAB(全等三角形对应角相等)(全等三角形对应角相等)AD是是BAC的角平分线。的角

12、平分线。求证:求证:BDCD证明:证明:AD是是BAC的角平分线(已知)的角平分线(已知)BADCAD(角平分线的定义)(角平分线的定义)ABAC(已知)(已知)BADCAD(已证)(已证)ADAD(公共边)(公共边)ABD ACD(SAS)BDCD(全等三角形对应边相等)(全等三角形对应边相等)276、如图,、如图,ABCD,ADBC,那么,那么AB=CD吗?为吗?为什么?什么?AD与与BC呢?呢?ABCD1234证明:证明:ABCD,ADBC(已知(已知)12 34(两直线平行,内错角相等)(两直线平行,内错角相等)在在ABC与与CDA中中 12(已证)(已证)AC=AC (公共边)(公共边)34(已证)(已证)ABC CDA(ASA)AB=CD BC=AD(全等三角形对应边相等)(全等三角形对应边相等)28

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(全等三角形判定(ASA和AAS)教学课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|