第六章-实数全章课件(共8课时)-5.ppt

上传人(卖家):晟晟文业 文档编号:4346551 上传时间:2022-12-01 格式:PPT 页数:16 大小:1.22MB
下载 相关 举报
第六章-实数全章课件(共8课时)-5.ppt_第1页
第1页 / 共16页
第六章-实数全章课件(共8课时)-5.ppt_第2页
第2页 / 共16页
第六章-实数全章课件(共8课时)-5.ppt_第3页
第3页 / 共16页
第六章-实数全章课件(共8课时)-5.ppt_第4页
第4页 / 共16页
第六章-实数全章课件(共8课时)-5.ppt_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、6.3 6.3 实数实数(第(第1 1课时)课时)本节先将有理数与有限小数和无限循环小数统一起来,再采用与有理数对照的方法引入无理数,接着类比用数轴上的点表示有理数,指出实数与数轴上的点的一一对应关系课件说明需要更完整的资源请到 新世纪教育网-学习学习目标目标:(1)了解无理数和实数的概念(2)知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.学习学习重点:重点:了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系.课件说明1探究新知探究新知2327119554911,有理数包括整数和分数,如果将下列分数写有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发

2、现?成小数的形式,你有什么发现?1探究新知探究新知你认为小数除了上述类型外,还会有什么你认为小数除了上述类型外,还会有什么类型的小数?类型的小数?1探究新知探究新知无理数的概念:无限不循环小数叫无理数无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负有理数正有理数有理数实数01探究新知探究新知负实数正实数实数 0因为非零有理数和无理数都有正负之分,那么你能类比有理数的分类方法,按大小关系对实数分类吗?5,3.14,0,-,0.1010010001(相邻两个1之间0的个数逐次加1)30.57 41探究新知探究新知例例1下列实数中,哪些是有理数?哪些是无理数?431探究新知探究新知我们知

3、道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗?1探究新知探究新知为什么?为什么?直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O 对应的数是多少?2运用新知运用新知判断正误,并说明理由(1)无理数都是无限小数;(2)实数包括正实数、0、负实数;(3)不带根号的数都是有理数;(4)所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数2运用新知运用新知3215416270.157.502.33,把下列各数填入相应的集合内:有理数集合:;无理数集合:;正实数集合:;负实数集合:2运用新知运用新知10.45833.71827,练习练习1下列各数中,哪些是有理数?哪些是无理数?2运用新知运用新知有理数集合有理数集合无理数集合无理数集合练习练习2在下列每一个圈里,至少填入三个适当的数3归纳总结归纳总结问题问题1 举例说明有理数和无理数的特点是什么?举例说明有理数和无理数的特点是什么?问题问题2 实数是由哪些数组成的?实数是由哪些数组成的?问题问题3 实数与数轴上的点有什么关系?实数与数轴上的点有什么关系?4布置作业布置作业教科书教科书 习题习题 6.3 第第1、2题;题;教科书教科书 复习题复习题 6 第第6题题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(第六章-实数全章课件(共8课时)-5.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|