1、数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法第二章第二章 分离变量法分离变量法一、有界弦的自由振动二、有限长杆上的热传导三、拉普拉斯方程的定解问题四、非齐次方程的解法五、非齐次边界条件的处理六、关于二阶常微分方程特征值问题的一些结论12/3/20221数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。适用范围:波动问题、热传导问题、稳定场问题等特点:a.物理上由叠加原理作保证,数学上由解的唯一性作保证;b.把
2、偏微分方程化为常微分方程来处理,使问题简单化。22222,0,0(0,)0,(,)0,0(,0)(,0)(),(),0uuaxl ttxutu l ttu xu xxxxlt 一、有界弦的自由振动12/3/20222数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法令(,)()()u x tX x T t代入方程:2()()()()X x Tta Xx T t2()()()()XxTtX xa T t 令2()()0()()0XxX xTta T t代入边界条件(0)()0,()()0XT tX l T t(0)0,()0XX l22222,0,0(0,)0,(,)
3、0,0(,0)(,0)(),(),0uuaxl ttxutu l ttu xu xxxxlt 1、求两端固定的弦自由振动的规律12/3/20223数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法()()0(0)0,()0XxX xXX l特征(固有)值问题:含有待定常数的常微分方程在一定条件下求非零解的问题特征(固有)值:使方程有非零解的常数值特征(固有)函数:和特征值相对应的非零解分情况讨论:01)()xxX xAeBe 00llABAeBe 00ABX02)()X xAxB00ABX()cossinX xAxBx0sin0ABl03)令 ,为非零实数 2(1,
4、2,3,)nnl222(1,2,3,)nnnl222nl()sin(1,2,3,)nnnXxBxnl12/3/20224数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法()sin(1,2,3,)nnnXxBxnl12/3/20225数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法2222()()0nna nTtT tl()cos sin(1,2,3,)nnnn atn atT tCDnll(,)(cossin)sin(1,2,3,)nnnn an anux tCtDtxnlll11(,)(,)(cossin)sin(1,2,3,)nn
5、nnnu x tux tn an anCtDtxnlll2()()0()()0XxX xT ta T t22222,0,0(0,)0,(,)0,0(,0)(,0)(),(),0uuaxl ttxutu l ttu xu xxxxlt 222(1,2,3,)nnnl()sin(1,2,3,)nnnXxBxnl12/3/20226数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法01(,)(,0)sin()ntnnu x tu xCxxl10(,)sin()nntu x tn anDxxtll1sin)sincos(nnnxlntlanDtlanCu2001 cos 2
6、/sindd22llnlnlx xxl001sinsindcoscosd02llnmnmnmxx xxxxllll xxlmxlnCxxlmxlnnldsinsindsin)(010 mCl2lmxxlmxlC0dsin)(2lnxxlnxanD0dsin)(2lnxxlnxlC0dsin)(212/3/20227数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法)()(),(tTxXtxu2/lnnxlnBxXnnsin)(tlanDtlanCTnnnsincos1sin)sincos(nnnxlntlanDtlanC11nnnnnTXuulnxxlnxanD0d
7、sin)(2lnxxlnxlC0dsin)(20 XX02 TaT分离变量求特征值和特征函数求另一个函数求通解确定常数分离变量法可以求解具有齐次边界条件的齐次偏微分方程。lxxtxuxxuttlututlxxuatu0),()0,(),()0,(0,0),(,0),0(0,0,2222212/3/20228数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法2 解的性质 x=x0时:(,)(cossin)sinnnnn an anux tCtDtxlll其中:22arctannnnnnnnDn aACDlC00(,)sincos()nnnnnux tAxtlcos()
8、sinnnnnAtxlxlnsin驻波法 2nlnlt=t0时:22nnnaflnnvfnllna 22Ta 00(,)cos()sinnnnnnux tAtxl(1,2,3,)n 12/3/20229数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法例1:设有一根长为10个单位的弦,两端固定,初速为零,初位移为 ,求弦作微小横向振动时的位移。()(10)1000 xxx)()(),(tTxXtxuTXTX 410TTXX 41010 XX0104 TT0)()0(),0(tTXtu 0)10(,0)0(100,0XXxXX0)0(X0)()10(),10(tTXt
9、u0)10(X100,0)0,(,1000)10()0,(0,0),10(),0(0,100,1022422xtxuxxxuttututxxutu解:12/3/202210数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0)10(,0)0(100,0XXxXX20 02 XX1010(0)0()0XABX lAeBe0 BA0)(xXxxBeAexX)(0BAxxX)(0 BA0)(xX0 X20(0)0(10)sin100XAXB,3,2,1,10nnn10022nnxnBxXnn10sin)(xBxAxXsincos)(02 XX12/3/202211数学物
10、理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法,3,2,1,100/22nnnxnBxXnn10sin)(0104 TT010022 nnTnTtnDtnCTnnn10sin10cos1110sin)10sin10cos(nnnnnxntnDtnCuunnnTXu)10sin10cos(10sintnDtnCxnBnnnxntnDtnCnn10sin)10sin10cos(100,0)0,(,1000)10()0,(0,0),10(),0(0,100,1022422xtxuxxxuttututxxutu于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这
11、些特解满足方程和齐次边界条件,但不满足初始条件。由这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为线性方程的叠加原理,设原问题的解为 0)10(,0)0(100,0XXxXX12/3/202212数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法110sin)10sin10cos(nnnxntnDtnCu1000)10(10sin)0,(1xxxnCxunn0sin)0,(1nnxlnlanDtxu0nD100d10sin1000)10(102xxnxxCn13310)12(sin)12(10cos)12(54nxntnnu10
12、0d10sin)10(50001xxnxx)cos1(5233nn为奇数,为偶数,nnn33540100,0)0,(,1000)10()0,(0,0),10(),0(0,100,1022422xtxuxxxuttututxxutu12/3/202213数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法)()(),(tTxXtxu2XTa X T21XTXaT0 XX20Ta T0)()0(),0(tTXtu0,010(0)0,()0XXxXX l0)0(X(,)()()0u l tX l T tx()0X l222222,0,0(,)(0,)0,0,0(,0)(,0
13、)2,0,0uuaxl ttxu l tuttxu xu xxlxxlt解:例2求下列定解问题12/3/202214数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法0,0(0)0,()0XXxlXX l20 02 XX(0)0()0llXABX lA eB e0 BA0)(xXxxBeAexX)(0BAxxX)(0 BA0)(xX0 X20(0)0()cos0XAX lBl(21)/2,1,2,3,nnln222(21)/4nnl(21)()sin2nnnXxBxlxBxAxXsincos)(02 XX12/3/202215数学物理方程与特殊函数数学物理方程与特殊
14、函数第第2 2章分离变量法章分离变量法222(21)/4nnl(21)()sin2nnnXxBxl20Ta T2222(21)04nnnaTTl(21)(21)cossin1,2,3,22nnnnanaTCtDtnll11(21)(21)(21)(cossin)sin222nnnnnnananuuCtDtxlllnnnTXu(21)(21)(21)(cossin)sin222nnnananCtDtxlll222222,0,0(,)(0,)0,0,0(,0)(,0)2,0,0uuaxl ttxu l tuttxu xu xxlxxlt0,0(0)0,()0XXxlXX l12/3/202216数
15、学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法1(21)(21)(21)(cossin)sin222nnnnananuCtDtxlll21(21)(,0)sin22nnnu xCxxlxl1(,0)(21)(21)sin022nnu xnanDxtll0nD202(21)(2)sind2lnnCxlxx xll2331321(21)(21)cossin(21)22nlnanutxnll 23332(21)ln 2(,0)(,0)2,0u xu xxlxt初始条件12/3/202217数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法)(
16、)(),(tTxXtxuTXTX TTXX 0 XX0 TT0)()1(),1(0)()0(),0(tTXtutTXtu0)1(,0)0(XX10,0)0,(,sin)0,(0,0),1(),0(0,10,2222xtxuxxuttututxxutu例3 求下列定解问题解:0)1(,0)0(10,0XXxXX由例由例1中的方法知,以上特征值问题中的方法知,以上特征值问题的特征值和特征函数分别为的特征值和特征函数分别为22nnxnBxXnnsin)(022 nnTnTtnDtnCTnnnsincos12/3/202218数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量
17、法11sin)sincos(nnnnnxntnDtnCuunnnTXu)sincos(sintnDtnCxnBnnnxntnDtnCnnsin)sincos(xxnCxunnsinsin)0,(10sin)0,(1nnxnnDtxu0nD1011nnCn,xtusincos这些特解满足方程和齐次边界条件,但不满足初始条件。由这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为线性方程的叠加原理,设原问题的解为于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特故原问题的解为这些特故原问题的解为12/3/202219数学物理方程与特殊函数数学物
18、理方程与特殊函数第第2 2章分离变量法章分离变量法lxtxuxxuttlhuxtlututlxxuatu0,0)0,(),()0,(0,0),(),(,0),0(,0,0,22222)()(),(tTxXtxuTXaTX 2TTaXX 210 XX02 TaT0)()0(),0(tTXtu0)()(,0)0(lhXlXX 0)()(,0)0(0,0lhXlXXlxXX0)()()()()()()(),(),(tTlhXlXtTlhXtTlXtlhuxtlu例4 求下列定解问题令代入方程:解:12/3/202220数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0
19、)()(,0)0(0,0lhXlXXlxXX02xxBeAexX)(0)()(0)0(llllBhehAeeBeAlhXlXBAX0 BA0)(xX02 XX0BAxxX)(0)()(hAlAlhXlX0A0)(xX0 X0)0(BX02xBxAxXsincos)(0sincos)()(,0)0(lBhlBlhXlXAXhl/tan,3,2,1,nn2nnxBxXnnnsin)(02 XX12/3/202221数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxtxuxxuttlhuxtlututlxxuatu0,0)0,(),()0,(0,0),(),(,0),
20、0(,0,0,22222,3,2,1,n2nnxBxXnnnsin)(02 TaT022 nnnTaTatDatCTnnnnnsincosnnnTXu 11sinsincosnnnnnnnnxatDatCuuatDatCxBnnnnnnsincossinxatDatCnnnnnsinsincos 0)()(,0)0(0,0lhXlXXlxXX于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特解满足方程和齐次边界条件,但不满足初始条件。由这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为线性方程的叠加原理,设原问题的解为12/3/20222
21、2数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxtxuxxuttlhuxtlututlxxuatu0,0)0,(),()0,(0,0),(),(,0),0(,0,0,222221sinsincosnnnnnnxatDatCu0sin)0,(1xaDtxunnnn0nD)(sin)0,(1xxCxunnnlmmlmxxxxxC020dsindsin)(1sincosnnnnxatCuxxxxxxClmlmnnndsin)(dsinsin001 lmmxxC02dsin12/3/202223数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离
22、变量法nmnmxxxnlm00dsinsin0nmnmnmnmll)sin()sin(21nmnmnmnmnmnmllllllsincoscossinsincoscossin21llllnmnnmmnmnmcossinsincos)(1mmnnnmnmnmnmlllltantancoscos1)(10 xxxlnmnmd)cos()cos(210hl/tan12/3/202224数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法二 有限长杆上的热传导222,0,0,(,)(0,)0,(,)0,0(,0)()0uuaxl ttxu l tuthu l ttxu xxx
23、l)()(),(tTxXtxu2XTa X T 21XTXaT0 XX20Ta T0)()0(),0(tTXtu0)()(,0)0(lhXlXX0)()()()()()()(),(),(tTlhXlXtTlhXtTlXtlhuxtlu令带入方程:解:12/3/202225数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0)()(,0)0(0,0lhXlXXlxXXhl/tan,3,2,1,0nn2nnxBxXnnnsin)(由例由例4知,以上特征值问题的知,以上特征值问题的特征值和特征函数分别为特征值和特征函数分别为满足方程满足方程20Ta T220nnnTa
24、T22na tnnTC ennnTXu 2 211sinna tnnnnnuuC ex22sinna tnnnC B ex22sinna tnnC ex于是得到一系列分离变量形式于是得到一系列分离变量形式的特解的特解这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为)(sin)0,(1xxCxunnnnmnmxxxnlm00dsinsin0lmmlmxxxxxC020dsindsin)(1sincosnnnnxatCu12/3/202226数学物理方程与特殊函数数学物理方程
25、与特殊函数第第2 2章分离变量法章分离变量法lxxxuttlututlxxuatu0),()0,(0,0),(,0),0(0,0,222)()(),(tTxXtxuXTaXT 2002 TaTXX 0)(,0)0(00lXXlxXXXXTaT 20)()(),(0)()0(),0(tTlXtlutTXtu0)(,0)0(lXX令代入方程:令例5 求下列定解问题解:xlnBXnnsin,3,2,1,22nlnnn由例由例1中的方法知,以上特征值问题中的方法知,以上特征值问题的特征值和特征函数分别为的特征值和特征函数分别为12/3/202227数学物理方程与特殊函数数学物理方程与特殊函数第第2 2
26、章分离变量法章分离变量法02TaT02222nnTlnaTtlnanneAT2222nnnTXu 11sin2222ntlnannnxlneCuuxlneBAtlnannsin22222 2 22sina ntlnnnuC exl1sin)()0,(nnxlnCxxuxxlnxlClndsin)(20于是得到一系列分离于是得到一系列分离变量形式的特解变量形式的特解这些特解满足方程和齐次边界条件,这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠但不满足初始条件。由线性方程的叠加原理,设原问题的解为加原理,设原问题的解为12/3/202228数学物理方程与特殊函数数学物理方程与特殊
27、函数第第2 2章分离变量法章分离变量法lxxxutxtluxtutlxxuatu0),()0,(0,0),(,0),0(0,0,222)()(),(tTxXtxuXTaXT 2XXTaT 2002 TaTXX 0)(,0)0(00lXXlxXX0)()(),(0)()0(),0(tTlXxtlutTXxtu0)(,0)0(lXX例6 求下列定解问题解:令12/3/202229数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法 0)(,0)0(00lXXlxXX0202 XXxxBeAeX0X0)0(BAXlleBeAlX)(0 BA00 XBAxX0BX 0202
28、XXxBxAXcossinlnnxlnBXnncos0)0(AX0sin)(lBlX,3,2,1,22nlnnn12/3/202230数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxxxutxtluxtutlxxuatu0),()0,(0,0),(,0),0(0,0,222xlnBXnncos,2,1,0,2nlnn02TaT000T00TA002222nnTlnaTtlnanneAT2222nnnTXu xlneBAtlnanncos2222xlneCtlnancos2222000CAB000TXu 0)(,0)0(00lXXlxXX于是得到一系列分离变量形
29、式的特解于是得到一系列分离变量形式的特解12/3/202231数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法10cos)()0,(nnxlnCCxxuxxlCld)(100 xxlnxlClndcos)(20()1x若 则u为多少?为什么会出现这样的现象?思考100cos2222ntlnannnxlneCCuu这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为(),10,10 xx al若001()d2llCx xl022()cosd2(1)
30、1()lnnnCxx xllln12/3/202232数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法xxtuau20|0 xx luu)(|0 xut)()(xXtTu0)()0(LXXXXTaT/)/(2220TaT20XX22exp()T Aatsin,nlXx)()(xXtTukkkkkXTu),(txuu分离变量流程图12/3/202233数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法三 拉普拉斯方程的定解问题axxbxuxxubyyauyubyaxyuxu0),(),(),()0,(0,0),(),0(0,0,02222
31、XYu 0 YXYXYYXX 0 XX0 YY 0)()0(0,0aXXaxXX0)()(),(0)()0(),0(yYaXyauyYXyu0)(,0)0(aXX1 直角坐标系下的拉普拉斯问题解:由例由例1中的方法知,以上特征值问题中的方法知,以上特征值问题的特征值和特征函数分别为的特征值和特征函数分别为xanAXnnsin,3,2,1,2nann12/3/202234数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法axxbxuxxubyyauyubyaxyuxu0),(),(),()0,(0,0),(),0(0,0,02222xanAXnnsin,3,2,1,2
32、nann0 YY0222 nnYanYyannyannneDeCYnnnYXu 1nnuu1sinnyannyannxaneDeCxaneDeCyannyannsinsinnnyyaannnnnuC eD eAxa于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为12/3/202235数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法axxbxuxxubyyauyubyaxyuxu0
33、),(),(),()0,(0,0),(),0(0,0,022221sinnyannyannxaneDeCuxanDCxxunnn1sin)()0,(xaneDeCxbxunabnnabnn1sin)(),(xxanxaDCnndsin)(2a0 xxanxaeDeCabnnabnndsin)(2a0022()()sind1n baann banx exx xaaCe022()()sind1n baann banx exx xaaDe12/3/202236数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法22220,0,0(0,)(,)0,0(,0)(),(,)(),
34、0uuxaybxyuyu a yybxxu xx u x bxxaXYu 0 YXYXYYXX 0 XX0 YY 0)()0(0,0aXXaxXX0)()(),(0)()0(),0(yYaXxyauyYXxyu0)(,0)0(aXX例7 求下列定解问题解:由例由例6中的方法知,以上特征值问题中的方法知,以上特征值问题的特征值和特征函数分别为的特征值和特征函数分别为xanBXnncos,3,2,1,0,22nannn12/3/202237数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法axxbxuxxubyxyauxyubyaxyuxu0),(),(),()0,(0
35、,0),(),0(0,0,02222xanBXnncos,3,2,1,0,22nannn0 YY0000DyCY0 Y00222 nnYanYyannyannneDeCYnnnYXu 000YXu 00000C yDBC yDxaneDeCyannyanncosxanBeDeCnyannyanncosxaneDeCDyCuunyannyannnn1000cos于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为1
36、2/3/202238数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法axxbxuxxubyxyauxyubyaxyuxu0),(),(),()0,(0,0),(),0(0,0,02222xaneDeCDyCunyannyann100cosxanDCDxxunnn10cos)()0,(xaneDeCDbCxbxunabnnabnn100cos)(),(xxanxaDCnndcos)(2a0 xxanxaeDeCabnnabnndcos)(2a01dcos)()(22a0abnabnnexxanxexaC1dcos)()(22a0abnabnnexxanxexaDxx
37、aDd)(1a00 xxaDbCd)(1a000 xxxabCd)(-)(1a0012/3/202239数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法axxuxxuyyauyuyaxyuxu0,0),(),()0,(0,0),(),0(0,0,02222XYu 0 YXYXYYXX 0 XX0 YY 0)()0(0,0aXXaxXX0)()(),(0)()0(),0(yYaXyauyYXyu0)(,0)0(aXX例8 求下列定解问题解:由例由例1中的方法知,以上特征值问题中的方法知,以上特征值问题的特征值和特征函数分别为的特征值和特征函数分别为xanBXnnsi
38、n,3,2,1,2nann12/3/202240数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法axxuxxuyyauyuyaxyuxu0,0),(),()0,(0,0),(),0(0,0,02222xanBXnnsin,3,2,1,2nann0 YY0222 nnYanYyannyannneDeCY11sin)(nyannyannnnxaneDeCuunnnYXu xaneDeCyannyannsin)(xanDxxunn1sin)()0,(xxanxaDandsin)(20于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特解满足方程和齐次边
39、界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为00),(nCxu12/3/202241数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法2 圆域内的拉普拉斯问题22222yuxuu22,arctanyxxysin,cos221cos,sin/1122222yxyxxyxyxyxuu2222222222222sincoscos2sinsinuuuuuyuxuxuxu2222222222222sinsinsin2sincosuuuuuxuuuuyuxu112222222
40、22cossinuuyuyuyusincosuu22211uu12/3/202242数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法20),(),(20,01100222fuuu),0(u)2,(),(uu)()(),(u0112 0112 21102 0 ),2()(,0)()2()()(例9 求下列定解问题解:(自然边界条件)(周期性边界条件))2()(周期特征值问题12/3/202243数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法0202 BeAe000 AB00A02sincosBAnn,3,2,1,22nnnnnBnAn
41、nnsincos022 n(欧拉方程)lntet令ddd1 ddd ddPPtPtt 222d1 d1dd()()ddddPPPttt ),2()(,0周期特征值问题故以上周期特征值问题的特征值和特征函数分别为,2,1,0,22nnnnnBnAnnnsincos0)()(2 tnt,2,1,)(,ln)(;,2,1,)(,)(000000nDCDCneDeCttDCtnnnnnntnntnn12/3/202244数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法20),(),(20,01100222fuuu,3,2,1,0,2nnnnBnAnnnsincos0ln0
42、00DC 0C02 nnnnnnDCnnC000unnnu100sincosnnnnnnnFnEEuu000ECAnnnnnnnnFnECnBnAsincossincos1000sincos)(),(nnnnnFnEEfu222000000111()d,()cosd,()sind2nnnnEfEfnFfn (由自然边界条件)(由自然边界条件)于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为12/3/20224
43、5数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法20,1),(,0),(20,011222buaubauu)()(),(u0112 0112 21102 0 例10 求下列定解问题解:)2,(),(uu(周期性边界条件)),2()(,0)()2()()()2()(周期特征值问题,3,2,1,0,2nnnnBnAnnnsincos12/3/202246数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法20,1),(,0),(20,011222buaubauu02 欧拉方程 00002 ln000DC 02 n022 nnnnnnnnDC
44、000unnnulnln00000FEDCAnnnnnnDCnBnAsincosnHGnFEnnnnnnnnsincos1000sincoslnnnnnnnnnnnnnHGnFEFEuu,3,2,1,0,2nnnnBnAnnnsincos这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为12/3/202247数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法20,1),(,0),(20,011222buaubauu1000sincoslnnnnn
45、nnnnnnnnHGnFEFEuu0sincosln),(100nnnnnnnnnnaHaGnaFaEaFEau1sincosln),(100nnnnnnnnnnbHbGnbFbEbFEbu0ln00aFE0nnnnaHaG0nnnnaFaE1ln00bFE0nnnnbHbG0nnnnbFbEabaElnln0abFln10其他为零ababaulnlnlnlnabalnln12/3/202248数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法1,0)3/,()0,(3/0,6sin),1(3/0,1,011222uuuuu),0(u)()(),(u0112 011
46、2 21102 0 0)3/()0(0)3/()0(3/0,00)()3/()()0(例11 求下列定解问题解:由例由例1中的方法知,以上特征值问中的方法知,以上特征值问题的特征值和特征函数分别为题的特征值和特征函数分别为,3,2,1,922nnnnnBnn3sin(自然边界条件)12/3/202249数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法1,0)3/,()0,(3/0,6sin),1(3/0,1,011222uuuuunBnn3sin,3,2,1,92nnn02 0922 nnnnnnnnDC33nnC3nnnu1313sinnnnnnnEuu13si
47、n6sin),1(nnnEu2,0,12nEEn66sinunnnnnnECnB333sin3sin(由自然边界条件)12/3/202250数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法qypxtpxyxyxutqxutxutqytyputyutqypxyuxuatu0,00,0),()0,(,0),(),0,(0,0,0),(),0(0,0,0,22222)()()(),(tTyYxXtyxuTYXYTXaTXY 2012 TTaYYXX XX YY)(12TTa0 XX0 YY0)(2TaT例11 求解下列二维热传导方程的定解问题解:0 XX0)()0(pX
48、X由例由例1中的方法知,以上特征值问中的方法知,以上特征值问题的特征值和特征函数分别为题的特征值和特征函数分别为,3,2,1,222npnnxpnBXnnsin0 YY0)()0(qYY,3,2,1,222mqmmyqmCYmmsin12/3/202251数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法0)(2TaT0)(2222222mnmnTaqmpnTtaqmpnmnmneDT2222222)(mnmnmnTYXu2222222()sinsinnma tpqnmmnnmBx Cy D epq2222222()sinsinnma tpqmnnmExyepq22
49、22222()1111sinsinnma tpqmnmnmnmnnmuuExyepq11(,0)(,)sinsinmnmnnmu x yx yExypq004(,)sinsind dqpmnnmEx yxy x ypqpq 于是得到一系列分离变量形式的特解于是得到一系列分离变量形式的特解这些特解满足方程和齐次边界条件,但不满足初始条件。由线这些特解满足方程和齐次边界条件,但不满足初始条件。由线性方程的叠加原理,设原问题的解为性方程的叠加原理,设原问题的解为12/3/202252数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxxxuttlututlxuxuatu
50、0),()0,(0,0),(),0(0,0,222veutvexvaevetvetttt222222xvatv0),0(),0(tvetut)0,()0,(xvxu0),0(tv0),(tlv)()0,(xxv0),(),(tlvetlut例12 求下列热传导方程的定解问题解法一:令12/3/202253数学物理方程与特殊函数数学物理方程与特殊函数第第2 2章分离变量法章分离变量法lxxxuttlututlxuxuatu0),()0,(0,0),(),0(0,0,222XTu XTTXaTX 2XXaTaT 2210 XX012 TaT0)()(),(0)()0(),0(tTlXtlutTXt