扎实开展教研活动有效实施数学课程课件.ppt

上传人(卖家):晟晟文业 文档编号:4374353 上传时间:2022-12-03 格式:PPT 页数:24 大小:227.50KB
下载 相关 举报
扎实开展教研活动有效实施数学课程课件.ppt_第1页
第1页 / 共24页
扎实开展教研活动有效实施数学课程课件.ppt_第2页
第2页 / 共24页
扎实开展教研活动有效实施数学课程课件.ppt_第3页
第3页 / 共24页
扎实开展教研活动有效实施数学课程课件.ppt_第4页
第4页 / 共24页
扎实开展教研活动有效实施数学课程课件.ppt_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、 扎实开展教研活动扎实开展教研活动 有效实施数学课程有效实施数学课程教学视导情况汇报教学视导情况汇报(闵行区闵行区)一、基本情况一、基本情况1 1区研训人员勤于研究、深入实际,区研训人员勤于研究、深入实际,教学指导有力。教学指导有力。(1)工作思路明确,工作作风扎实。)工作思路明确,工作作风扎实。(2)研训活动多样,研训内容务实。)研训活动多样,研训内容务实。(3)重视自身研修,真诚服务基层。)重视自身研修,真诚服务基层。2 2学校教研组富有朝气、充满活力,学校教研组富有朝气、充满活力,研修活动扎实。研修活动扎实。(1)重视培育优良组风,促进教研活动)重视培育优良组风,促进教研活动深入开展。深

2、入开展。(2)着力改善教学环节,促进数学课程)着力改善教学环节,促进数学课程有效实施。有效实施。(3)积极展开课题研究,促进教研水平)积极展开课题研究,促进教研水平不断提升。不断提升。3 3课堂教学重视基础、重视过程,课堂教学重视基础、重视过程,基本要求落实。基本要求落实。(1)重视数学的基础教学,教学目标)重视数学的基础教学,教学目标正确定位。正确定位。(2)关注学生的学习过程,教学活动)关注学生的学习过程,教学活动扎实展开。扎实展开。(3)创设认知的良好环境,师生互动)创设认知的良好环境,师生互动激活课堂。激活课堂。关于加强教研工作的几点建议:继续继续认真研读数学课本认真研读数学课本;进一

3、步进一步加强对数学基础教学的过程加强对数学基础教学的过程研究;研究;更多地更多地关注同类课例的比较研究关注同类课例的比较研究。二、教材研讨二、教材研讨 1 1对于初中数学主干内容的基本认识。对于初中数学主干内容的基本认识。(1)把握基本框架。)把握基本框架。【数与运算数与运算】以数系扩展为线索扩充对于数的认识。以数系扩展为线索扩充对于数的认识。(认识有理数系统认识有理数系统,了解实数初步了解实数初步)【方程与代数方程与代数】以方程为中心建立初等代数的基础。以方程为中心建立初等代数的基础。(代数式是根基,方程为中心,不等式讲初步)代数式是根基,方程为中心,不等式讲初步)【图形与几何图形与几何】以

4、研究图形性质为载体演练几何以研究图形性质为载体演练几何推理。推理。(直观几何注重直观感知;实验几何注重合情推理;直观几何注重直观感知;实验几何注重合情推理;论证几何注重演绎推理)论证几何注重演绎推理)【函数与分析函数与分析】以形成函数概念和直观研究简单以形成函数概念和直观研究简单初等函数为基本任务进行数学分析的奠基。初等函数为基本任务进行数学分析的奠基。(着重研究正比例函数、反比例函数、一次函数,初(着重研究正比例函数、反比例函数、一次函数,初步研究二次函数)步研究二次函数)【数据处理与概率统计数据处理与概率统计】以体验概率与统计的基以体验概率与统计的基本思想方法为重点引进概率与统计的初步知识

5、。本思想方法为重点引进概率与统计的初步知识。(用于解释和解决现实生活中简单的概率统计问题)(用于解释和解决现实生活中简单的概率统计问题)(2)重视几个转折。)重视几个转折。从从算术到代数算术到代数的转折;的转折;从从实验几何到论证几何实验几何到论证几何的转折;的转折;从从常量数学到变量数学常量数学到变量数学的转折;的转折;从从确定性数学到随机性数学确定性数学到随机性数学的转折的转折。(3)关注过渡衔接。)关注过渡衔接。2 2对于课本内容处理的几点说明对于课本内容处理的几点说明(1)整数与分数)整数与分数【六上【六上】A A认识认识 分数的表示形式分数的表示形式 p/qp/q (p p、q q为

6、整数,为整数,q q不等于零)不等于零)B B教学注意事项教学注意事项 注重注重数的表示形式;(比数和非比数)数的表示形式;(比数和非比数)渗透渗透对立统一的观点;(整数与分数对立统一的观点;(整数与分数统一为分数)统一为分数)理解理解本质。(不要人为地强化对于整本质。(不要人为地强化对于整数与分数的区分)数与分数的区分)(2)代数式)代数式【七上】与一元一次方程与一元一次方程【六下】A A认识认识 观点观点1 1(数(数式式方程)方程)代数式是数的发展,是对方程进行研究的代数式是数的发展,是对方程进行研究的基础基础(注重演绎,学习效率高)(注重演绎,学习效率高)观点观点2 2(数(数方程方程

7、式)式)先有方程求解,后有代数式的理论先有方程求解,后有代数式的理论 (注重探究,教育价值高)注重探究,教育价值高)课本的处理课本的处理兼顾教学的价值与效率兼顾教学的价值与效率 有理数有理数一元一次方程一元一次方程整式与分式;整式与分式;实数实数 二次根式二次根式 初等代数方程。初等代数方程。B教学注意事项教学注意事项 1 1)条理过程条理过程 渗透字母渗透字母“代代”数数认识方程(元,方程认识方程(元,方程的解)的解)理解一元一次方程(利用乘方理解理解一元一次方程(利用乘方理解“次次”数)数)解一元一次方程(利用等式性质解一元一次方程(利用等式性质两边两边和有理数运算性质合并和有理数运算性质

8、合并)归纳解一元一次方程的一般步骤(从形式上认识归纳解一元一次方程的一般步骤(从形式上认识“项项”和和“移项移项”渗透渗透“式式”的概念)的概念)2 2)重视说理重视说理 说明方程变形的依据说明方程变形的依据及时讲评思考方及时讲评思考方法法揭示主题思想揭示主题思想 3 3)引导探究引导探究(3)因式分解与整式除法)因式分解与整式除法【七上】A A认识认识 【原教材原教材】整式的运算整式的运算(加减,乘除,乘(加减,乘除,乘方)方)因式分解因式分解单列一章单列一章 【课本课本】整式整式(概念,加减,乘法,因式分解,(概念,加减,乘法,因式分解,除法)除法)对因式分解安排的顺序变动,体现了关注重点

9、对因式分解安排的顺序变动,体现了关注重点的不同的不同(分别是运算的整体性、变形的互逆性)。(分别是运算的整体性、变形的互逆性)。B B教学注意事项教学注意事项 一般情况下,建议用教材教,进行实践研究。一般情况下,建议用教材教,进行实践研究。讲求实效。讲求实效。允许调整顺序,注意控制因式分解的难度。允许调整顺序,注意控制因式分解的难度。(4)代数式)代数式 A A认识认识 以以“字母表示数字母表示数”的数学思想为导向将的数学思想为导向将数的概念进一步抽象和发展,体现了数学数的概念进一步抽象和发展,体现了数学的逐步抽象和广泛应用的特点。的逐步抽象和广泛应用的特点。代数式是运用符号构成的数学语言,其

10、代数式是运用符号构成的数学语言,其本质是表示一个数。本质是表示一个数。知识系统:知识系统:整式(单项式、多项式),分式,二次整式(单项式、多项式),分式,二次根式。根式。(有理式和无理式)(有理式和无理式)B B教学注意事项教学注意事项 逐步展开:逐步展开:孕伏孕伏用字母表示数用字母表示数 【体会字母表示数的数学思想【体会字母表示数的数学思想】一元一次方程和不等式一元一次方程和不等式 【具体认识、初步感知【具体认识、初步感知“式式”】形成形成提出代数式的概念;列代数式。提出代数式的概念;列代数式。发展发展具体研究整式、分式与二次根式;具体研究整式、分式与二次根式;建立代数式与方程、函数的联系。

11、建立代数式与方程、函数的联系。(5)分式)分式【七上【七上】A A认识认识 正确理解概念:正确理解概念:A/B A/B (其中(其中A A、B B是整式,是整式,B B不等于零)不等于零)B B教学注意事项教学注意事项 类比类比分数,形成分式的概念、归纳分式的基分数,形成分式的概念、归纳分式的基本性质、讨论分式的运算。本性质、讨论分式的运算。抓住抓住“分式的分子和分母都是用整式表示的分式的分子和分母都是用整式表示的数数”这一本质,导出分式运算的法则。这一本质,导出分式运算的法则。引导引导学生关注分式与分数的联系及区别,关学生关注分式与分数的联系及区别,关注分式运算与整式运算(前后知识)之间的联

12、系。注分式运算与整式运算(前后知识)之间的联系。(6)二次根式)二次根式【八上【八上】A A认识认识 正确理解概念。正确理解概念。(二次根式中的字母取值必(二次根式中的字母取值必须确保这个根式有意义)须确保这个根式有意义)最简二次根式。数字式与字母式。最简二次根式。数字式与字母式。二次根式的性质。二次根式的性质。B B教学注意事项教学注意事项 二次根式中的字母取值范围讨论问题。二次根式中的字母取值范围讨论问题。(要将根号内的字母移到根号外时需考虑)(要将根号内的字母移到根号外时需考虑)二次根式运算与实数运算之间关系的教学处理。二次根式运算与实数运算之间关系的教学处理。(讨论数字式化简是为二次根

13、式的化简服务;单(讨论数字式化简是为二次根式的化简服务;单纯的数字式及其运算一般归结为实数及其运算)纯的数字式及其运算一般归结为实数及其运算)(7)一元二次方程的根与系数关系)一元二次方程的根与系数关系【拓展【拓展II】A A认识认识 问题的提出问题的提出:(一元二次方程)由方程的系数确定方程的根(一元二次方程)由方程的系数确定方程的根 由方程的根确定方程的系数(?)由方程的根确定方程的系数(?)韦达定理是方程理论中的重要定理,在有关一元高次韦达定理是方程理论中的重要定理,在有关一元高次方程的根的讨论中有重要意义。在初中数学中,它未列入方程的根的讨论中有重要意义。在初中数学中,它未列入基本内容

14、。基本内容。B B教学注意事项教学注意事项 一元二次方程的根与系数关系的发现过程具有教育一元二次方程的根与系数关系的发现过程具有教育价值。价值。(观察(观察猜想猜想证明)证明)一元二次方程的根与系数关系定理是韦达定理的简一元二次方程的根与系数关系定理是韦达定理的简单形式。在复数范围内,韦达定理正确。单形式。在复数范围内,韦达定理正确。讨论一元二次方程的讨论一元二次方程的实数根实数根与系数的关系时,必须与系数的关系时,必须考虑一元二次方程的考虑一元二次方程的判别式判别式的值是否大于或等于零。的值是否大于或等于零。(8)函数)函数【七下【七下】A A认识认识 描述性定义描述性定义(强调变化过程及两

15、个变量之间的依赖关系)(强调变化过程及两个变量之间的依赖关系)着重于认识函数的概念、表示方法及研究函数的方法;着重于认识函数的概念、表示方法及研究函数的方法;以正比例函数和反比例函数为起点,初步感知变量数学;以正比例函数和反比例函数为起点,初步感知变量数学;以一次函数、二次函数为载体,进行基础性教学。以一次函数、二次函数为载体,进行基础性教学。B B教学注意事项教学注意事项 函数的概念有一个发展过程,初中阶段注重直观性认识。函数的概念有一个发展过程,初中阶段注重直观性认识。正比例函数是从正比例关系演变过来的,是更一般意义下正比例函数是从正比例关系演变过来的,是更一般意义下 的正比例关系的正比例

16、关系(变量的取值可为(变量的取值可为0 0;乘积式);乘积式)帮助学生理解函数的图像的特征性质。帮助学生理解函数的图像的特征性质。(方程与曲线)(方程与曲线)关于函数的性质,主要是通过观察函数图像的特征归纳得关于函数的性质,主要是通过观察函数图像的特征归纳得到的到的(直观性)(直观性);注重函数性质的直观描述。;注重函数性质的直观描述。(8)几何证明)几何证明【八上【八上】A A认识认识 “几何证明几何证明”一章是从实验几何进入论证几何的台阶,一章是从实验几何进入论证几何的台阶,帮助学生了解形式逻辑的初步知识,注重学习演绎推理的帮助学生了解形式逻辑的初步知识,注重学习演绎推理的方法和规则。方法

17、和规则。B B教学注意事项教学注意事项 重视重视“因果关系因果关系”的分析,渗透形式逻辑中的推理的分析,渗透形式逻辑中的推理法则及其表达规范。法则及其表达规范。重视重视“证明举例证明举例”的示范,关注证明思路分析和规范的示范,关注证明思路分析和规范表达;不要偏向证题术。表达;不要偏向证题术。重视重视“轨迹轨迹”的特征性质的特征性质(以线段的垂直平分线定理(以线段的垂直平分线定理和角的平分线定理为例完整进行表述)和角的平分线定理为例完整进行表述),要求学生知道轨,要求学生知道轨迹的意义和三个基本轨迹,了解交轨法。迹的意义和三个基本轨迹,了解交轨法。重视重视合情推理,注意展现合情推理,注意展现“实

18、验实验归纳归纳猜想猜想证明证明”的过程;注意引导学生进行解题过程的反思和解的过程;注意引导学生进行解题过程的反思和解题经验的总结,促进学生思维品质的提高。题经验的总结,促进学生思维品质的提高。(9)三角形)三角形【七下、八上【七下、八上】A A认识认识 三角形是最简单的封闭性平面图形之一,安三角形是最简单的封闭性平面图形之一,安排为从实验几何向论证几何过渡的内容。排为从实验几何向论证几何过渡的内容。从对一般三角形的研究到对特殊三角形的研究。从对一般三角形的研究到对特殊三角形的研究。B B教学注意事项教学注意事项 等腰三角形(等边三角形)是实验几何的内等腰三角形(等边三角形)是实验几何的内容,在

19、研究中引进了演绎推理方法。容,在研究中引进了演绎推理方法。【实验归纳【实验归纳演绎推理演绎推理】直角三角形内容集中安排在论证几何中,研究直角三角形内容集中安排在论证几何中,研究时主要采用演绎推理方法。(性质与判定,勾股时主要采用演绎推理方法。(性质与判定,勾股定理)定理)(10)平面向量)平面向量【八上【八上】A A认识认识 向量向量是数学中的一个是数学中的一个核心概念核心概念和有用工和有用工具,并且在物理学科中有重要应用。在初具,并且在物理学科中有重要应用。在初中阶段引进向量的初步知识,既有必要也中阶段引进向量的初步知识,既有必要也是可行的。是可行的。特意特意将向量有关内容将向量有关内容分散

20、编排分散编排在相关几在相关几何章节内,这样既符合数学知识发展的逻何章节内,这样既符合数学知识发展的逻辑顺序,又表明这些内容被当作平行四边辑顺序,又表明这些内容被当作平行四边形、相似三角形有关知识的运用来看待形、相似三角形有关知识的运用来看待,在在此进行初步的学习此进行初步的学习.B B教学注意事项教学注意事项 把握教学基本要求把握教学基本要求,着重,着重“三会三会”:会会解释解释有关基本概念,有关基本概念,会化简会化简线性运算算式,线性运算算式,会画图会画图表示运算结果。表示运算结果。平实组织教学平实组织教学,强调以下几点:强调以下几点:(1 1)教学中应以课本内容为线索,充实)教学中应以课本

21、内容为线索,充实直观事例,强化操作活动,深入浅出,宁直观事例,强化操作活动,深入浅出,宁低勿高。要重视直观认识和画图训练。低勿高。要重视直观认识和画图训练。(2 2)对向量加法、实数与向量相乘的运)对向量加法、实数与向量相乘的运算律,不要求进行论证,不要求作出几何算律,不要求进行论证,不要求作出几何解释;只要求学生通过操作进行确认、通解释;只要求学生通过操作进行确认、通过练习逐步达到会用。过练习逐步达到会用。(3 3)对向量的合成与分解,不要求进行)对向量的合成与分解,不要求进行一般性的讨论;只要求学生结合图形获得具一般性的讨论;只要求学生结合图形获得具体的认识,在今后学习物理时会进行操作性体的认识,在今后学习物理时会进行操作性的运用。的运用。(4 4)对平行向量定理、线性组合的内容,)对平行向量定理、线性组合的内容,只要求学生了解其表示形式,不必深究其理只要求学生了解其表示形式,不必深究其理论价值。论价值。(5 5)可适当安排用向量的线性运算及有)可适当安排用向量的线性运算及有关运算律解决简单平面几何问题的教学关运算律解决简单平面几何问题的教学,以激以激发学生学习向量的兴趣,但不要求会用向量发学生学习向量的兴趣,但不要求会用向量法法.请批评指正请批评指正衷心感谢

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(扎实开展教研活动有效实施数学课程课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|