1、ASIPPASIPPNBINBI非生长性时间累积无标度网络模型非生长性时间累积无标度网络模型非生长性时间累积无标度网络模型 报告人:韩筱璞(中国科学院等离子体物理研究所)合作者:谢彦波(中国科学技术大学近代物理系)ASIPPASIPPNBINBI非生长性时间累积无标度网络模型主要内容v 研究背景v 模型规则描述v 模型的方程描述与数值模拟v 总结与讨论ASIPPASIPPNBINBI非生长性时间累积无标度网络模型传统的网络研究v 规则网络、随机网络v 较均匀的结构v 低集聚系数ASIPPASIPPNBINBI非生长性时间累积无标度网络模型大量的实际网络v 极不均匀的结构v 幂率形式的度分布v
2、小平均距离v 高集聚系数 无标度特性 小世界特性例如:大量的合作网、WWW、因特网、性接触网、电话呼叫网等ASIPPASIPPNBINBI非生长性时间累积无标度网络模型重要的无标度网络模型-BA模型 BA模型(Barabsi,Albert,1999):存在问题:v 网络生长v 优先连接(i ki)富者更富v 得到度分布幂指数为-3v 网络规模必须不停生长v 各个体都知道其他个体的度v 连边是固定的v 只能得到整数幂指数ASIPPASIPPNBINBI非生长性时间累积无标度网络模型典型非生长性网络模型 Park,Lai,and Ye,2005 Ohkubo,Yasuda,and Tanaka,2
3、005 Xie,Zhou,and Wang,2006主要结论:网络生长不是产生无标度特性的必需条件 通过系统的自组织产生无标度特性ASIPPASIPPNBINBI非生长性时间累积无标度网络模型时间累积图中节点1于t2时刻被感染节点2于t1时刻和节点1相连接,但不可能被节点1所传染但根据时间累积后的网络结构,节点2则可能被节点1所传染t1t2t31243111222333444对一些网络,在某个瞬时结构是相对均匀的,但统计较长时间的累积网络则可表现出无标度性时间累积特性可能影响系统的动力学特性,如下例ASIPPASIPPNBINBI非生长性时间累积无标度网络模型时间累积网络的意义v 当一个网络中
4、的连边断开后又恢复连接的概率较小时,该网络的动力学特性与时间累积后的得到的网络相比将有较大差异v 在传播过程中,该类网络中可能出现一些度(经过时间累积后)很大,或者与其相联的节点的度很大,但被感染的可能性非常小的节点v 在一些社会网络,特别是性接触网络中,这种特性比较明显ASIPPASIPPNBINBI非生长性时间累积无标度网络模型建模主要针对的问题v 网络规模生长十分缓慢可以忽略v 连接过程中个体之间不知道对方的连边数v 通过时间累积可生成无标度网络ASIPPASIPPNBINBI非生长性时间累积无标度网络模型模型A-节点规则 总节点数N固定 节点的寿命给定为Tl 初始时刻各节点年龄均布于0
5、,Tl内 每有一个节点死亡,就会有一个新的初始年龄为0、时间累积度为0的孤立的节点取代它ASIPPASIPPNBINBI非生长性时间累积无标度网络模型模型A-连接规则节点在每一时步以可变的概率x处于活跃态,并随机选择主动或被动选择主动的节点随机选择一个选择被动的节点申请连接 选择被动的节点在所有向自己申请的主动节点中随机选择一个建立连边 建立了新连边的节点的旧连边会自动断开 1096785432110987654321(b)(a)ASIPPASIPPNBINBI非生长性时间累积无标度网络模型模型A-节点状态的改变 处于活跃态并且成功建立连边的节点,下一时步处于活跃态的概率x将增大一个定值x(0
6、 x 1)但x不能达到或超过1 处于了活跃态但未能建立新的连边的节点下一时步处于活跃态的概率x会减小x但不能小于或等于0 各节点的初始的x值均为x0(0 x0 1)ASIPPASIPPNBINBI非生长性时间累积无标度网络模型 在模型A的基础上引入节点的吸引度 每个节点都有一个随机的吸引度值 各节点的吸引度保持不变 在主动节点选择被动节点申请时,和被动节点选择主动节点连接时,其申请概率或连接概率均和被选择方的吸引度值线性相关 吸引度值较高的节点有更大的可能成功连接模型B-吸引度的引入ASIPPASIPPNBINBI非生长性时间累积无标度网络模型x(t+1)=x(t)+x,k(t+1)=k(t)
7、+1 with probability x(t)g (x(t)+x x0)0 (x(t)=x0)x(t+1)=x(t),k(t+1)=k(t)with probability 1 x(t)(x(t)x0)1 x0g (x(t)=x0)x(t+1)=x(t),k(t+1)=k(t)+1 with probability x(t)g (x(t)+x 1)0 (x(t)+x 1)其中g=1 e-1为节点处于活跃态时可成功连接的概率,k为时间累积后节点的度模型A的时间演化0 x(t)(1 g)x(t)gx(t)1ASIPPASIPPNBINBI非生长性时间累积无标度网络模型模型A的主方程令Q(k,n,
8、t)表示节点在t时刻 x=x0+nx且度为k的概率;nm为最大可能的n值,满足x0+nmx1且x0+(nm+1)x 1,1 n nm时:Q(k,n,t+1)Q(k,n,t)=gx0+(n 1)xQ(k 1,n 1,t)(x0+nx)Q(k,n,t)+(1 g)x0+(n+1)xQ(k,n+1,t),n=0时:Q(k,n,t+1)Q(k,n,t)=gx0Q(k,n,t)+(1 g)(x0+x)Q(k,n+1,t),n=nm时:Q(k,n,t+1)Q(k,n,t)=gx0+(n 1)xQ(k 1,n 1,t)(x0+nx)Q(k,n,t)+g(x0+nx)Q(k 1,n,t).统计时间范围为Tl时
9、的累积度分布:lmTtnnltnkQTkP00),(1)(ASIPPASIPPNBINBI非生长性时间累积无标度网络模型主方程的数值解和数值模拟结果1101001E-41E-30.010.1 P(k)kASIPPASIPPNBINBI非生长性时间累积无标度网络模型不同参数下模型A和B的数值模拟结果110100110100100011010010001101001101001000110100110100 Slope=-1.62 (12)Slope=-1.40 kP(k)(5)Slope=-1.60 (6)Slope=-1.56 (7)Slope=-1.72 (8)Slope=-1.81 (1)
10、Slope=-2.15 (2)Slope=-1.69 (3)Slope=-1.84 (4)Slope=-1.48 (9)Slope=-1.67 (10)Slope=-1.57 (11)x0=0.001x=0.003x0=0.001x=0.005x0=0.003x=0.005模型A模型BT=200T=200T=2000T=2000Tl=2000ASIPPASIPPNBINBI非生长性时间累积无标度网络模型模型的特点和意义v 网络规模不变,节点进行匀速的更新v 节点的连接概率和它的度之间没有确定的关系v 连接概率与连接成功次数和失败次数的差异相关v 瞬时网络结构较为均匀,每个节点至多同时连接一条连边,类似于单配网络(Eames and Keeling,2004)v 当一条连边断开后,又重新连接的概率非常小(不同于现有的一些传播模型中的网络)v 经过较长时间的累积后出现无标度特性v 该类时间累积网络的传播特性需要进一步研究v 有助于理解更多的无标度特性的生成机制ASIPPASIPPNBINBI非生长性时间累积无标度网络模型感谢您的关注Han Xiao-P