《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt

上传人(卖家):晟晟文业 文档编号:4459515 上传时间:2022-12-11 格式:PPT 页数:45 大小:1.27MB
下载 相关 举报
《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt_第1页
第1页 / 共45页
《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt_第2页
第2页 / 共45页
《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt_第3页
第3页 / 共45页
《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt_第4页
第4页 / 共45页
《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、教育部教育部“精英杯公开课大赛简介精英杯公开课大赛简介 2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。等腰三角形第一章 三角形的证明导入新课讲授新课当堂练习课堂小结

2、八年级数学下BS 教学课件 第4课时 等边三角形的判定及含30角的直角三角形的性质 学习目标1.能用所学的知识证明等边三角形的判定定理.(重点)2.掌握含30角的直角三角形的性质并解决有关问题.(难点)导入新课导入新课观察与思考观察下面图片,说说它们都是由什么图形组成的?思考:上节课我们学习了等腰三角形的判定定理,那等边三角形的判定定理是什么呢?一个三角形满足什么条件就是等边三角形?由等腰三角形的判定定理,可得等边三角形的两个判定定理:1.三个角都相等的三角形是等边三角形;2.有一个角等于60的等腰三角形是等边三角形.你能证明这些定理吗?等边三角形的判定一讲授新课讲授新课ABC:如图,A=B=

3、C.求证:AB=AC=BC.A=B,AC=BC.B=C,AB=AC.AB=AC=BC.证明:定理2:有一个角是60的等腰三角形是等边三角形.ABC:假设AB=AC ,A=60.求证:AB=AC=BC.证明:AB=AC ,A=60.BC (180。A)=60.A=B=C.AB=AC=BC.证明完整吗?是不是还有另一种情形呢?12证明:AB=AC,B=60(),C=B=60(等边对等角),A=60(三角形内角和定理)A=B=C=60 ABC是等边三角形(三个角都相等的三角形是等边三角形).:如图,在ABC中,AB=AC,B=60求证:ABC是等边三角形第二种情况:有一个底角是60.ACB60【验证

4、】等腰三角形(含等边三角形)性质判定的条件等边对等角等角对等边“三线合一,即等腰三角形顶角平分线,底边上的中线、高线互相重合有一角是60的等腰三角形是等边三角形等边三角形三个内角都相等,且每个角都是60三个角都相等的三角形是等边三角形归纳总结例1 如图,在等边三角形ABC中,DEBC,求证:ADE是等边三角形.ACBDE证明:ABC是等边三角形,A=B=C.DE/BC,ADE=B,AED=C.A=ADE=AED.ADE是等边三角形.想一想:此题还有其他证法吗?典例精析变式:上题中,假设将条件DEBC改为AD=AE,ADE还是等边三角形吗?试说明理由.ACBDE 如图,在等边三角形ABC中,AD

5、=AE,求证:ADE是等边三角形.证明:ABC是等边三角形,A=B=C=60.AD=AE,ADE是等腰三角形是等腰三角形 ADE是等边三角形.又 A=60.含30角的直角三角形的性质二操作:用两个含有30角的三角板,你能拼成一个怎样的三角形?30303030你能说出所拼成的三角形的形状吗?猜测:在直角三角形中,30角所对的直角边与斜边有怎样的大小关系?30303030303030303030合作探究结论结论:在直角三角形中在直角三角形中,30,30角所对的直角边等于斜边的角所对的直角边等于斜边的一半一半.:如图,在ABC中,ACB=90,A=30.求证:BC=AB.12A30BC分析:突破如何

6、证明“线段的倍、分问题转 化“线段相等问题猜测验证30 30 ACB=90,()ACD=90,(平角意义)在ABC与ADC中,BC=DC,作图ACB=ACD,已证 AC=AC,公共边 ABC ADCSAS,AD=AB;ACB=90,BAC=30,()B=60,ABD是等边三角形,(有一个角是60的等腰三角形是等边三角形)BC=BD=AB(等式性质)30ABCD证明:延长BC至D,使CD=BC,连接AD,2121BC:AC:AB=定理:在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半几何语言:在ABC中,ACB=90,A=30BC=AB(在直角三角形中,30角所对的直角边

7、等于斜边的一半)12ABC30推论:1 32:归纳总结CBAD例2 如图,在ABC中,AB=AC=2a,B=ACB=15,CD是腰AB上的高,求CD的长.解:B=ACB=15,()DAC=B+ACB=15+15=30,ADC=90,CD=AC=a在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半12例3:如图,在ABC中,ACB=90,A=30,CDAB于D求证:BD=DACB30证明:A=30,CDAB,ACB=90BC=B=60BCD=30,BD=BD=AB4AB2,CB2,AB.4 1.ABC中,A=B=60,AB=3cm,那么ABC的周长为_cm.9当堂练习当堂练

8、习2.在ABC中,B90,C30,AB3那么AC=_;BC=_ABC33063 33.:如图,AB=BC,CDE=120,DFBA,且DF平分CDE.求证:ABC是等边三角形.证明:AB=BC,ABC是等边三角形.又CDE=120,DF平分CDE.FDC=ABC=60,ABC是等腰三角形,EDF=FDC=60,又DFBA,证明:延长BC至D,使CD=BC,连接AD.ACB=90,ACD=90又AC=ACACBACD(SAS)AB=ADCD=BC,BC=BD又BC=AB,AB=BDAB=AD=BD,即ABD是等边三角形B=60在RtABC中,BAC=304:在RtABC中,C=90,BC=AB求

9、证:BAC=30CBAD121212课堂小结课堂小结1.等边三角形的判定:有一个角是60的等腰三角形是等边三角形三个角都相等的三角形是等边三角形2.特殊的直角三角形的性质:在直角三角形中,如果有一个锐角等于30,那么它所对的直角边等于斜边的一半在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于303.数学方法:分类的思想 角平分线第一章 三角形的证明导入新课讲授新课当堂练习课堂小结 八年级数学下BS 教学课件 第第1 1课时课时 角平分线角平分线 1.会表达角平分线的性质及判定;重点2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能

10、应用这两个性质解决一些简单的实际问题;难点3.经历探索、猜测、证明的过程,进一步开展学生的推理证明意识和能力学习目标情境引入 如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?比例尺为120000DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O导入新课导入新课1.1.操作测量:取点P的三个不同的位置,分别过点P作PDOA,PE OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜测线段PD与PE的大小关系,写出结:_ PD PE 第一次第一次第二次第二次 第三次第三次 COBAPD=PE

11、pDE实验:OC是AOB的平分线,点P是射线OC上的 任意一点猜测:角的平分线上的点到角的两边的距离相等.角平分线的性质一讲授新课讲授新课验证猜测:如图,AOC=BOC,点P在OC上,PDOA,PEOB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:PDOA,PEOB,PDO=PEO=90.在PDO和和PEO中,PDO=PEO,AOC=BOC,OP=OP,PDO PEO(AAS).PD=PE.角的平分线上的点到角的两边的距离相等u 性质定理:角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:证明线段相等.u应用

12、格式:OP 是AOB的平分线,PD=PE在角的平分线上的点到这个角的两边的距离相等.推理的理由有三个,必须写完全,不能少了任何一个.知识要点PDOA,PEOB,BADOPEC判一判:1 如下左图,AD平分BAC,=,()在角的平分线上的点到这个角的两边的距离相等BD CDBADC(2)如上右图,如上右图,DCAC,DBAB .=,()在角的平分线上的点到这个角的两边的距离相等BD CDBADC例1:如图,在ABC中,AD是它的角平分线,且BD=CD,DEAB,DFAC.垂足分别为E,F.求证:EB=FC.ABCDEF证明:AD是BAC的角平分线,DEAB,DFAC,DE=DF,DEB=DFC=

13、90.在RtBDE 和 RtCDF中,DE=DF,BD=CD,RtBDE RtCDF(HL).EB=FC.例2:如图,AM是BAC的平分线,点P在AM上,PDAB,PEAC,垂足分别是D、E,PD=4cm,那么PE=_cm.BACPMDE4温馨提示:存在两条垂线段直接应用ABCP变式:如 图,在RtABC中,AC=BC,C90,AP平分BAC交BC于点P,假设PC4,AB=14.1那么点P到AB的距离为_.D4温馨提示:存在一条垂线段构造应用ABCP变式:如图,在Rt ABC中,AC=BC,C900,AP平分BAC交BC于点P,假设PC4,AB=14.2求APB的面积.D14PDBCPDPBD

14、BPCPBDBBCDBADDBAB3求PDB的周长.ABPD=28.12PDBS由垂直平分线的性质,可知,PD=PC=4,=1.应用角平分线性质:存在存在角平分线角平分线涉及涉及距离问题距离问题2.联系角平分线性质:面积面积周长周长条件条件知识与方法知识与方法利用角平分线的性利用角平分线的性质所得到的等量关质所得到的等量关系进行转化求解系进行转化求解角平分线的判定二PAOBCDE角的内部到角的两边距离相等的点在角的平分线上角的内部到角的两边距离相等的点在角的平分线上思考:交换角的平分线性质中的和结论,你能得到什么结论,这个新结论正确吗?角平分线的性质:角平分线的性质:角的平分线上的点到角的两边

15、的距离相等角的平分线上的点到角的两边的距离相等.思考:这个结论正确吗?逆命题:如图,PDOA,PEOB,垂足分别是D、E,PD=PE.求证:点P在AOB的角平分线上.证明:作射线OP,点P在AOB 角的平分线上.在RtPDO和RtPEO 中,全等三角形的对应角相等.OP=OP公共边,公共边,PD=PE,BADOPEPDOA,PEOB.PDO=PEO=90,RtPDO RtPEO HL.AOP=BOP证明猜测u判定定理:角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平

16、分线上.u应用格式:PDOA,PEOB,PD=PE.点点P 在AOB的平分线上.知识总结例3:如图,CBD和BCE的平分线相交于点F,求证:点F在DAE的平分线上 证明:过点F作FGAE于G,FHAD于H,FMBC于M.点F在BCE的平分线上,FGAE,FMBC.FGFM.又点F在CBD的平分线上,FHAD,FMBC,FMFH,FGFH.点F在DAE的平分线上.GHMABCFED例4 如图,某地有两所大学和两条交叉的公路图中点M,N表示大学,OA,OB表示公路,现方案修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计

17、(尺规作图,不写作法,保存作图痕迹)ONMABONMABP方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.解:如以下图:归纳总结图形已知条件结论PCPCOP平分AOBPDOA于DPEOB于EPD=PEOP平分AOBPD=PEPDOA于DPEOB于E角的平分线的判定角的平分线的性质当堂练习当堂练习2.ABC中中,C=90,AD平分平分CAB,且且BC=8,BD=5,那么点那么点D到到AB的距离是的距离是 .ABCD3E1.如图,如图,DEAB,DFBG,垂足分别,垂足分别是是E,F,DE=DF,EDB=60,那么,那么 EBF=度,度,BE=.60BFE

18、BDFACG3.用三角尺可按下面方法画角平分线:在用三角尺可按下面方法画角平分线:在AOB的两边上,分的两边上,分别取别取OM=ON,再分别过点再分别过点M,N作作OA,OB的垂线,交点为的垂线,交点为P,画,画射线射线OP,那么那么OP平分平分AOB.为什么?为什么?AOBMNP解:在RTMOP和RTNOP中,OM=ON,OP=OP,RTMOP RTNOPHL.MOP=NOP,即OP平分AOB.课堂小结课堂小结角平分线性 质定 理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等辅助线添加过角平分线上一点向两边作垂线段判 定定 理在一个角的内部,到角两边距离相等的点在这个角的平分线上

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(《第4课时等边三角形的判定及含30°角的直角三角形的性质》课件(同课异构)2022年课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|