1、 圆锥的体积圆锥的体积 n一、教材分析n二、教法n三、学法n四、教学过程设计n五、板书设计一、教材分析 “圆锥的体积”是在初步认识圆锥特征的基础上进行教学的。通过本节课的学习,发展学生的操作能力、实践能力,从而培养学生的创新精神,为今后的学习和发展打好基础。教学目标n(1)探索并掌握圆锥体积的计算方法n(2)经历观察、猜想、实验等过程,发展学生的操作能力、归纳推理能力,培养创新精神。n(3)培养学生自主探索与合作交流的能力。n教学重点:探索并掌握圆锥体积的计算方法。n教学难点:理解圆锥体积的计算方法的推导过程。教学准备:1、多媒体教学课件 2、等底等高的圆柱形、圆锥形容器 和 不等底等高圆柱形
2、、圆锥形容器 3、装有水的水桶二、教法 本节课主要通过引导发现、实验操作,帮助学生在自主探索和合作交流的过程中,真正理解和掌握数学知识与技能,同时借助多媒体教学手段,增大教学容量,提高教学质量。三、学法n 素质教育要求学生不仅“学会”,更要“会学”。这节课学生通过自己动手实验、合作交流、归纳推理、尝试练习等方法,使学生成为学习的主人。三、教学过程设计三、教学过程设计 本节课我设计了以下五个环节:第一环节:创设情境,导入新课;第二环节:实验探究;第三环节:尝试练习;第四环节:应用深化;第五环节:课堂小结;哪个更划算?哪个更划算?n 炎热的夏天,小明和小强去超市买雪糕,圆锥形的雪糕标价是0.80.
3、8元元,圆柱形的标价2 2元元。于是,他们两个为买哪一种形状的雪糕争执起来。同学们,你们能帮他们解决到底买哪种形状的雪糕更合算吗?(圆柱形和圆锥形的雪糕是等底等高的)第一环节:创设情境,导入新课;第二环节:实验探究;实验一:研究等底等高圆柱和圆锥的体积关系?要求:按照实验报告表的内容做实验,并把实验情况做好记录。实验器材实验器材一桶水、等底等高一桶水、等底等高的圆柱和圆锥各一个的圆柱和圆锥各一个 实验过程实验过程 1 在空圆柱里在空圆柱里装满水倒入空圆装满水倒入空圆锥里,()锥里,()次正好倒完。次正好倒完。2 在空圆锥里装在空圆锥里装 满水倒入空圆柱满水倒入空圆柱里,()次里,()次正好装满
4、。正好装满。结结 论论圆柱的体积是和圆柱的体积是和它(它()的)的圆锥体积的(圆锥体积的()倍。倍。圆锥体积圆锥体积计算公式计算公式 V圆锥的体积是圆锥的体积是和它(和它()的圆柱体积的的圆柱体积的)()(3 33 3等底等高等底等高等底等高等底等高3 33 31 13 31 1S S h h通过实验学生发现:圆柱的体积是与它等底等高的圆锥体积的3倍;圆锥的体积是与它等底等高圆柱的体积的1/3;因为:V柱=SH 所以:V锥=1/3 SHn实验二:研究不等底等高圆柱和圆锥的体积关系?要求:用不等底等高的空圆锥、空圆柱盛水做实验,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,等底等高圆柱和圆
5、锥的体积关系圆柱体积底面积圆柱体积底面积 高高13圆锥体积圆锥体积=底面积底面积 高高 哪个更划算?哪个更划算?当圆锥形冰淇淋和圆柱形冰淇淋体积相等时:圆锥形冰淇淋3x0.8=2.4元 圆柱形冰淇淋2元,所以买圆柱形的划算。一个圆锥形的零件,底面积是一个圆锥形的零件,底面积是60平方厘米,高是平方厘米,高是12厘米。这个零件厘米。这个零件的体积是多少?的体积是多少?第三环节:尝试练习第四环节:深化练习1、判断正误n1、正方体、长方体、圆锥体的体积都等于底面积高。()n 2、圆柱的体积是圆锥体积的三倍,那么圆锥和圆柱一定等底等高()n 3、等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么
6、圆锥的体积是9立方米。()在建筑工地上,有一个近似于在建筑工地上,有一个近似于圆锥形状的沙堆,测得底面直径是圆锥形状的沙堆,测得底面直径是米,高是米,高是1.5米。每立方米沙大米。每立方米沙大约重约重1.7吨,这堆沙约重多少吨?吨,这堆沙约重多少吨?(得数保留整吨数)(得数保留整吨数)1.5米米4米米 有一根底面直径是有一根底面直径是6厘米,长是厘米,长是15厘米厘米的圆柱形钢材,要把它削成与它等底等高的圆柱形钢材,要把它削成与它等底等高的圆锥形零件。要削去钢材多少立方厘米?的圆锥形零件。要削去钢材多少立方厘米?15厘米厘米6厘米厘米第五环节:课堂小结 这节课你学会了什么?布置作业:课本 27页第 3、4 题。五、板书设计 圆锥的体积 圆锥的体积是与它等底等高圆柱的体积的1/3 圆柱的体积:底面积高 V=SH 圆锥的体积:底面积高 1/3 V=1/3 SH