1、北师大版初中数学总复习知识点总结第一章 实数.4考点一、实数的概念及分类.4考点二、实数的倒数、相反数和绝对值.4考点三、平方根、算数平方根和立方根.4考点四、科学记数法和近似数.4考点五、实数大小的比较.5考点六、实数的运算.5第二章 代数式.5考点一、整式的有关概念.5考点二、多项式.5考点三、因式分解.6考点四、分式.6 考点五、二次根式(初中数学基础,分值很大).7第三章方程(组).7考点一、一元一次方程的概念.7考点二、一元二次方程.7考点三、一元二次方程的解法.8考点四、一元二次方程根的判别式.8考点五、一元二次方程根与系数的关系.8考点六、分式方程.8考点七、二元一次方程组.8第
2、四章不等式(组).9考点一、不等式的概念.9考点二、不等式基本性质.9考点三、一元一次不等式.9考点四、一元一次不等式组.9第五章一次函数与反比例函数.9考点一、平面直角坐标系.9考点二、不同位置的点的坐标的特征.10考点三、函数及其相关概念.10考点四、正比例函数和一次函数.10考点五、反比例函数.11第六章二次函数.12考点一、二次函数的概念和图像.12考点二、二次函数的解析式.13考点三、二次函数的最值.13考点四、二次函数的性质.13第七章图形的初步认识.14考点一、直线、射线和线段.14考点二、角.15考点三、相交线.16考点四、平行线.16考点五、命题、定理、证明.17第 1 页第
3、 2 页考点六、投影与视图.17第八章三角形.17考点一、三角形.17考点二、全等三角形.18考点三、等腰三角形.19第九章四边形.20考点一、四边形的相关概念.20考点二、平行四边形.20考点三、矩形.20考点四、菱形.21考点五、正方形.21考点六、梯形(课外补充).21第十章解直角三角形.22考点一、直角三角形的性质.22考点二、直角三角形的判定.23考点三、锐角三角函数的概念.23考点四、解直角三角形.24第十一章圆.24考点一、圆的相关概念.24考点二、弦、弧等与圆有关的定义.24考点三、垂径定理及其推论.24考点四、圆的对称性.24 考点五、弧、弦、弦心距、圆心角之间的关系定理.2
4、5 考点六、圆周角定理及其推论.25考点七、点和圆的位置关系.25考点八、过三点的圆.25考点九、反证法.25考点十、直线与圆的位置关系.25考点十一、切线的判定和性质.25考点十二、切线长定理.25考点十三、三角形的内切圆.26考点十四、圆和圆的位置关系.26考点十五、正多边形和圆.26考点十六、与正多边形有关的概念.26考点十七、正多边形的对称性.26考点十八、弧长和扇形面积.26第十二章图形的变换.27考点一、平移.27考点二、轴对称.27考点三、旋转.28考点四、中心对称.28第十三章图形的相似.28考点一、比例线段.28考点二、平行线分线段成比例定理.29考点三、相似三角形.29第十
5、四章统计初步与概率初步.30第 3 页考点一、平均数.30考点二、统计学中的几个基本概念.31考点三、众数、中位数.31考点四、方差.31考点五、列表法求概率.32考点六、树状图法求概率.32考点七、利用频率估计概率.32中考数学常用公式及性质.331 乘法与因式分解.332 幂的运算性质.333 二次根式.334 三角不等式.335 某些数列前 n 项之和.336 一元二次方程.337 一次函数.338 反比例函数.339 二次函数.3410 统计初步.3511 频率与概率.3512 锐角三角形.3613 平面直角坐标系中的有关知识.3614 多边形内角和公式.3615 平行线段成比例定理.
6、3616 直角三角形中的射影定理.3617 圆的有关性质.3718 三角形的内心与外心.3719 弦切角定理及其推论.3720 相交弦定理、割线定理和切割线定理.3721 面积公式.37第第一一章章 实数实数考点一、考点一、实实数的概念及分数的概念及分类类1、实数的分类正有理数有理数有限小数和无限循环小数实数零负有理数 正无理数无理数无限不循环小数 负无理数32、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 7,3 2 等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8 等;(3)有特定结构的数,如 0.1010010001等;(4)某
7、些三角函数,如 sin60o 等考点二、考点二、实实数的倒数、相反数的倒数、相反数数和绝对和绝对值值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立
8、。倒数等于本身的数是 1 和-1。零没有倒数。考点三、考点三、平平方根、算数平方方根、算数平方根根和立方和立方根根1、平方根如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方跟)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数 a 的平方根记做“a”。2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“a”。正数和零的算术平方根都只有一个,零的算术平方根是零。a(a 0)a 0a 2 a;注意 a 的双重非负性:-a(a 0)a 03、立方根如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。一个正数有一个正的
9、立方根;一个负数有一个负的立方根;零的立方根是零。注意:3 a 3 a,这说明三次根号内的负号可以移到根号外面。考点四、考点四、科科学记数法和近似学记数法和近似数数1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的 数位止的所有数字,都叫做这个数的有效数字。2、科学记数法把一个数写做 a 10n 的形式,其中1 a 10,n 是整数,这种记数法叫做科学记数法。第 4 页bbbaaa考点五、考点五、实实数大小的比数大小的比较较1、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结
10、合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。2、实数大小比较的几种常用方法1数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。2求差比较:设 a、b 是实数,a b 0 a b,a b 0 a b,a b 0 a b3求商比较法:设 a、b 是两正实数,1 a b;1 a b;1 a b;4绝对值比较法:设 a、b 是两负实数,则 a b a b。5平方法:设 a、b 是两负实数,则 a 2 b 2 a b。考点六、考点六、实实数的运数的运算算1、加法交换律2、加法结合律3、乘法交换律4、乘法结合律a b b a(a b)c a (b c)ab ba(ab)c a(bc)5、
11、乘法对加法的分配律 a(b c)ab ac6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。第第二二章章 代代数数式式考点一、考点一、整整式的有关概式的有关概念念1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。2、单项式只含有数字与字母的积的代数式叫做单项式。21注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如 4a b,这种表示3就是错误的,应写成 13 a 2 b。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如 5a 3b 2 c3是 6 次单项式。考点二、考点二、多多项项式
12、式1、多项式几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。单项式和多项式统称整式。用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。3、去括号法则1括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。2括号前是“”,把括号和它前
13、面的“”号一起去掉,括号里各项都变号。4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。第 5 页整式的乘法:am an amn(m,n都是正整数)(am)n amn(m,n都是正整数)(ab)n anbn(n都是正整数)(a b)(a b)a 2 b 2(a b)2 a 2 2ab b 2(a b)2 a 2 2ab b 2整式的除法:am an amn(m,n都是正整数,a 0)注意:(1)单项式乘单项式的结果仍然是单项式。2单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。3计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号
14、。4多项式与多项式相乘的展开式中,有同类项的要合并同类项。5公式中的字母可以表示数,也可以表示单项式或多项式。(6)a 0 1(a 0);a p 1(a 0,p为正整数)a p(7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多 项式是不能这么计算的。考点三、考点三、因因式分式分解解1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的常用方法1提公因式法:ab ac a(b c)2运用公式法:a 2 b 2 (a b)(a b)a 2 2ab b 2 (a b)2a 2 2ab b 2 (a
15、 b)23分组分解法:ac ad bc bd a(c d)b(c d)(a b)(c d)4十字相乘法:a 2 (p q)a pq (a p)(a q)3、因式分解的一般步骤:1如果多项式的各项有公因式,那么先提取公因式。2在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2 项式可以尝试运用公式 法分解因式;3 项式可以尝试运用公式法、十字相乘法分解因式;4 项式及 4 项式以上的可以尝试分组分 解法分解因式3分解因式必须分解到每一个因式都不能再分解为止。考点四、考点四、分分式式1、分式的概念BAA一般地,用 A、B 表示两个整式,AB 就可以表示成的形式,如果 B 中含有字母
16、,式子就叫做分式。B其中,A 叫做分式的分子,B 叫做分式的分母。分式和整式通称为有理式。2、分式的性质1分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。2分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。3、分式的运算法则a c ac;a c a d ad;bdbd bdbcbcanbnb第 6 页a n()(n为整数);a b a b;ccca c ad bcbdbd考点五、考点五、二二次根次根式式(初中数(初中数学学基础,分值很大基础,分值很大)1、二次根式”;被开方数 a 必须是非负数。式子a(a 0)叫做二次根式,二
17、次根式必须满足:含有二次根号“2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样 的二次根式叫做最简二次根式。化二次根式为最简二次根式的方法和步骤:1如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然 后利用分母有理化进行化简。2如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。4、二次根式的性质(1)(a)2 a(a 0)a(a 0)(2)a 2 a a(a 0)(
18、3)ab a b(a 0,b 0)(4)(a 0,b 0)baab5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或 先去括号)。第第三三章章方方程程(组组)考点一、考点一、一一元一次方程的概元一次方程的概念念1、方程含有未知数的等式叫做方程。2、方程的解能使方程两边相等的未知数的值叫做方程的解。3、等式的性质1等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。2等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。4、一元一次方程只含有一个未知数,并且未知数的最高次数是 1 的整式方程叫做一元一次方
19、程,其中方程ax b (0 x为未知数,a 0)叫做一元一次方程的标准形式,a 是未知数 x 的系数,b 是常数项。考点二、考点二、一一元二次方元二次方程程1、一元二次方程含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。2、一元二次方程的一般形式第 7 页ax 2 bx c 0(a 0),它的特征是:等式左边十一个关于未知数 x 的二次多项式,等式右边是零,其 中 ax 2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。考点三、考点三、一一元二次方程的解元二次方程的解法法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解
20、的方法叫做直接开平方法。直接开平方法适用于解形如(x a)2 b 的一元二次方程。根据平方根的定义可知,x a 是 b 的平方根,当b 0 时,x a b,x a b,当 b0b0y0 x图像经过一、二、三象限,y 随 x 的增大而增 大。b0y0 x图像经过一、三、四象限,y 随 x 的增大而增 大。K0y0 x图像经过一、二、四象限,y 随 x 的增大 而减小b0 时,图像经过第一、三象限,y 随 x 的增大而增大;2当 k0 时,y 随 x 的增大而增大2当 k0k0 时,函数图像的两个分支分别在第一、三象限。在每个象限内,y 随 x 的增大而减小。x 的取值范围是 x 0,y 的取值范
21、围是 y 0;当 k0a0y0 xy0 x性质bb2a(1)抛物线开口向上,并向上无限延伸;(2)对称轴是 x=,顶点坐标是(2a(1)抛物线开口向下,并向下无限延伸;b2ab第 1 3 页2a,(2)对称轴是 x=,顶点坐标是(,4a4ac b 2);b2a(3)在对称轴的左侧,即当 x b 时,y 随 x 的增2a大而增大,简记左减右增;(4)抛物线有最低点,当 x=b 时,y 有最小值,2a4ac b 24a4ac b 2);b3在对称轴的左侧,即当 x b 时,y 随 x2a的增大而减小,简记左增右减;4抛物线有最高点,当 x=b 时,y 有最大值,2a4a4a4ac b 2y最小值
22、y最大值 2、二次函数 y ax 2 bx c(a,b,c是常数,a 0)中,a、b、c 的含义:a 表示开口方向:a 0 时,抛物线开口向上a 0 时,图像与 x 轴有两个交点;当=0 时,图像与 x 轴有一个交点;当 0 时,图像与 x 轴没有交点。补充补充:1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)y如图:点 A 坐标为(x1,y1)点 B 坐标为(x2,y2)221212则 AB 间的距离,即线段 AB 的长度为 x x y y A0 xB2、函数平移规律(中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)
23、左加右左加右减减、上加下、上加下减减第第七章七章图图形形的的初初步步认认识识考点一、考点一、直直线、射线和线线、射线和线段段1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。第 1 4 页第 1 5 页(2)点动成线,线动成面,面动成体。3、直线的概念一根拉得很紧的
24、线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。4、射线的概念直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。5、线段的概念直线上两个点和它们之间的部分叫做线段。这两个点叫做线段的端点。6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示。一条直线可以用一个小写字母表示。一条射线可以用端点和射线上另一点来表示。一条线段可用它的端点的两个大写字母来表示。注意注意:1表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。2直线和射线无长度,线段有长度。3直线无端点,射线有一个端点,线段有两个端点。4点和直线的位置关系有线面两
25、种:点在直线上,或者说直线经过这个点。点在直线外,或者说直线不经过这个点。7、直线的性质1直线公理:经过两个点有一条直线,并且只有一条直线。它可以简单地说成:过两点有且只有一条 直线。2过一点的直线有无数条。3直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。4直线上有无穷多个点。5两条不同的直线至多有一个公共点。8、线段的性质1线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。2连接两点的线段的长度,叫做这两点的距离。3线段的中点到两端点的距离相等。4线段的大小关系和它们的长度的大小关系是一致的。9、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线
26、段的直线是这条线段的垂直平分线。线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。考点二、考点二、角角1、角的相关概念有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。当角的两边在一条直线上时,组成的角叫做平角。平角的一半叫做直角;小于直角的角叫做锐角;大于直角且小于平角的角叫做钝角。如果两个角的和是一个直角,那么这两个角叫做互为余角,其中一个角叫做另一个角的余角。如果两个角的和是一个平角,那么这两个角叫做互为补角,其中一个角叫做另一个角的补角。2、角的表示角可以用大
27、写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有一下四种表示方法:用数字表示单独的角,如1,2,3 等。用小写的希腊字母表示单独的一个角,如,等。用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如B,C 等。用三个大写英文字母表示任一个角,如BAD,BAE,CAE 等。注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。3、角的度量角的度量有如下规定:把一个平角 180 等分,每一份就是 1 度的角,单位是度,用“”表示,1 度记作“1”,n 度记作“n”。把 1的角 60 等分,每一份叫做 1 分的角,1 分记作“1”。把 1 的角 60 等分,
28、每一份叫做 1 秒的角,1 秒记作“1”。1=60=60”4、角的性质1角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。2角的大小可以度量,可以比较3角可以参与运算。5、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。角的平分线有下面的性质定理:1角平分线上的点到这个角的两边的距离相等。2到一个角的两边距离相等的点在这个角的平分线上。考点三、考点三、相相交交线线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两 个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个
29、角叫做临补 角。临补角互补,对顶角相等。直线 AB,CD 与 EF 相交(或者说两条直线 AB,CD 被第三条直线 EF 所 截),构成八个角。其中1 与5 这两个角分别在 AB,CD 的上方,并 且在 EF 的同侧,像这样位置相同的一对角叫做同位角;3 与5 这两个 角都在 AB,CD 之间,并且在 EF 的异侧,像这样位置的两个角叫做内错 角;3 与6 在直线 AB,CD 之间,并侧在 EF 的同侧,像这样位置的 两个角叫做同旁内角。2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相 垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。直线 AB,CD 互相垂
30、直,记作“ABCD”(或“CDAB”),读作“AB 垂直于 CD”(或“CD 垂直于A B”)。垂线的性质:性质 1:过一点有且只有一条直线与已知直线垂直。性质 2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。考点四、考点四、平平行行线线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。平行用符号“”表示,如“ABCD”,读作“AB 平 行于 CD”。同一平面内,两条直线的位置关系只有两种:相交或平行。注意注意:1平行线是无限延伸的,无论怎样延伸也不相交。2当遇到线段、射线平行时,指的是线段、射线所在的直线平行。2、平行线公理及其推论平行公理:经过直线外一点
31、,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。平行线的两条判定定理:1两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。2两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线 平行。补充平行线的判定方法:第 1 6 页1平行于同一条直线的两直线平行。2垂直于同一条直线的两直线平行。3平行线的定义。4、平行线的性质1两直线平行,同位角相等。2两直线平行,
32、内错角相等。3两直线平行,同旁内角互补。考点五、考点五、命命题、定理、证题、定理、证明明1、命题的概念判断一件事情的语句,叫做命题。理解:命题的定义包括两层含义:1命题必须是个完整的句子;2这个句子必须对某件事情做出判断。2、命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。4、定理用推理的方法判断为正确的命题叫做定理。5、证明判断一个命题的正确性的推理过程叫做证明。6、证明的一般步骤
33、1根据题意,画出图形。2根据题设、结论、结合图形,写出已知、求证。3经过分析,找出由已知推出求证的途径,写出证明过程。考点六、考点六、投投影与视影与视图图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。中心投影:由同一点发出的光线所形成的投影称为中心投影。2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。物体的三视图特指主视图、俯视 图、左视图。主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。左视图:在侧面内得到的
34、由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。第第八章八章三三角角形形考点一、考点一、三三角角形形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的 边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段1三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分 线。2在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。3从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。3、三角形的稳定性第
35、1 7 页三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很 广,需要稳定的东西一般都制成三角形的形状。4、三角形的特性与表示 三角形有下面三个特性:1三角形有三条线段2三条线段不在同一直线上三角形是封闭图形3首尾顺次相接三角形用符号“”表示,顶点是 A、B、C 的三角形记作“ABC”,读作“三角形 ABC”。5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形 等腰三角形等边三角形 三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形1钝角三角形(有一个角为钝
36、角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论1三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。2三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可确定第三边的范围。证明线段不等关系。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于 180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:注:在同一个三角形中:等角对等边;等边对等角;大角对大边
37、;大边对大角。8、三角形的面积三角形的面积=底高2考点二、考点二、全全等三角等三角形形1、全等三角形的概念能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重 合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中 有公共端点的两边所成的角。2、全等三角形的表示和性质全等用符号“”表示,读作“全等于”。如ABCDEF,读作“三角形 ABC 全等于三角形 DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、三角形全等的判定三角形全等的判定定理:1边角边定理:
38、有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)2角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)3边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定:第 1 8 页对于特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对应 相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)4、全等变换只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:1平移变换:把图形沿某条直线平行移动的变换叫做平移变换。2对称
39、变换:将图形沿某直线翻折 180,这种变换叫做对称变换。3旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、考点三、等等腰三角腰三角形形1、等腰三角形的性质1等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论 2:等边三角形的各个角都相等,并且每个角都等于 60。2等腰三角形的其他性质:等腰直角三角形的两个底角相等且等于 45等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。b等腰三角形的三边关系:
40、设腰长为 a,底边长为 b,则a2等腰三角形的三角关系:设顶角为顶角为A,底角为B、C,则A=1802B,B=C=2结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。第 1 9 页180 A2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定 理常用于证明同一个三角形中的边相等。推论 1:三个角都相等的三角形是等边三角形推论 2:有一个角是 60的等腰三角形是等边三角形。推论 3:在直角三角形中,如果一个锐角等于 30,那么它所对的直角边等于斜边的一半。等腰三角形的性质与判定等腰三角形性质等腰
41、三角形判定中 线1、等腰三角形底边上的中线垂直底边,平分顶角;2、等腰三角形两腰上的中线相等,并且它们的交点与底边 两端点距离相等。1、两边上中线相等的三角形是等腰三角形;2、如果一个三角形的一边中线垂直这条边(平分这个 边的对角),那么这个三角形是等腰三角形角平分 线1、等腰三角形顶角平分线垂直平分底边;2、等腰三角形两底角平分线相等,并且它们的交点到底边 两端点的距离相等。1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;2、三角形中两个角的平分线相等,那么这个三角形是 等腰三角形。高 线1、等腰三角形底边上的高平分顶角、平分底边;2、等腰三角形两腰上的
42、高相等,并且它们的交点和底边两 端点距离相等。1、如果一个三角形一边上的高平分这条边(平分这条 边的对角),那么这个三角形是等腰三角形;2、有两条高相等的三角形是等腰三角形。角等边对等角等角对等边边底的一半腰长周长的一半两边相等的三角形是等腰三角形4、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。1三角形共有三条中位线,并且它们又重新构成一个新的三角形。2要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:
43、结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线互相平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。第第九章九章四四边边形形考点一、考点一、四四边形的相关概边形的相关概念念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。2、凸四边形把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。3、对角线在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。4、四边形的不稳定性三角形的三边如果确定
44、后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。5、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于 360。四边形的外角和定理:四边形的外角和等于 360。推论:多边形的内角和定理:n 边形的内角和等于(n 2)180;多边形的外角和定理:任意多边形的外角和等于 360。6、多边形的对角线条数的计算公式设多边形的边数为 n,则多边形的对角线条数为2(2)矩形的四个角都是直角第 2 0 页n(n 3)。考点二、考点二、平平行四边行四边形形1、平行四边形的概念两组对边分别
45、平行的四边形叫做平行四边形。平行四边形用符号“ABCD”表示,如平行四边形 ABCD 记作“ABCD”,读作“平行四边形 ABCD”。2、平行四边形的性质1平行四边形的邻角互补,对角相等。2平行四边形的对边平行且相等。推论:夹在两条平行线间的平行线段相等。3平行四边形的对角线互相平分。4若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。3、平行四边形的判定1定义:两组对边分别平行的四边形是平行四边形2定理 1:两组对角分别相等的四边形是平行四边形3定理 2:两组对边分别相等的四边形是平行四边形4定理 3:对角线互相平
46、分的四边形是平行四边形5定理 4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积 S 平行四边形=底边长高=ah考点三、考点三、矩矩形形1、矩形的概念有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)具有平行四边形的一切性质3矩形的对角线相等4矩形是轴对称图形3、矩形的判定1定义:有一个角是直角的平行四边形是矩形2定理 1:有三个角是直角的四边形是矩形3定理 2:对角线相等的平行四边形是矩形 4、矩形的面积S 矩形=长宽=ab考点四、考点四、菱菱形形1、
47、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质1具有平行四边形的一切性质2菱形的四条边相等3菱形的对角线互相垂直,并且每一条对角线平分一组对角4菱形是轴对称图形3、菱形的判定1定义:有一组邻边相等的平行四边形是菱形2定理 1:四边都相等的四边形是菱形3定理 2:对角线互相垂直的平行四边形是菱形 4、菱形的面积S 菱形=底边长高=两条对角线乘积的一半考点五、考点五、正正方方形形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质1具有平行四边形、矩形、菱形的一切性质2正方形的四个角都是直角,四条边都相等3正方形的两条对角线相等,并且互相垂直平分,每
48、一条对角线平分一组对角4正方形是轴对称图形,有 4 条对称轴5正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等 的小等腰直角三角形6正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。3、正方形的判定1判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。先证它是菱形,再证有一个角是直角。2判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)4、正方形的面积设正方形边长为 a,对角线长为 b2梯形的两底的距离叫做梯形的高。第 21页b 22S 正方形=a考点
49、六、考点六、梯梯形(课外补形(课外补充充)1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。两腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形梯形直角梯形特殊梯形等腰梯形2、梯形的判定1定义:一组对边平行而另一组对边不平行的四边形是梯形。2一组对边平行且不相等的四边形是梯形。3、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。3等腰梯形的对角线相等。4等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。14、等腰梯形的判定1
50、定义:两腰相等的梯形是等腰梯形2定理:在同一底上的两个角相等的梯形是等腰梯形3对角线相等的梯形是等腰梯形。5、梯形的面积1如图,S梯形ABCD 2(CD AB)DE2梯形中有关图形的面积:SABD SBAC;SAOD SBOC;SADC SBCD6、梯形中位线定理梯形中位线平行于两底,并且等于两底和的一半。第第十十章章解解直直角角三三角形角形考点一、考点一、直直角三角形的性角三角形的性质质1、直角三角形的两个锐角互余可表示如下:C=90 A+B=902、在直角三角形中,30角所对的直角边等于斜边的一半。A=30可表示如下:BC=1 AB2C=903、直角三角形斜边上的中线等于斜边的一半ACB=