1、张同类项与合并同类项同类项与合并同类项1.当单项式的系数是当单项式的系数是1或或-1时,时,“1”通常省略不写。通常省略不写。注意的问题:注意的问题:2.当式子分母中出现字母时不是单项式。当式子分母中出现字母时不是单项式。3.圆周率圆周率是常数,不要看成字母。是常数,不要看成字母。4.当单项式的系数是带分数时,通常写成假分数。当单项式的系数是带分数时,通常写成假分数。5.单项式的系数应包括它前面的性质符号。单项式的系数应包括它前面的性质符号。6.单项式次数是指所有字母的次数的和,与数字的次数没单项式次数是指所有字母的次数的和,与数字的次数没有关系。有关系。7.单独的数字不含字母单独的数字不含字
2、母,规定它的次数是零次规定它的次数是零次.1.在确定多项式的项时,要连同它前面的符号,在确定多项式的项时,要连同它前面的符号,2.一个多项式的次数最高项的次数是几,就说这个多项式是几次一个多项式的次数最高项的次数是几,就说这个多项式是几次多项式。多项式。3.在多项式中,每个单项式都是这个多项式的项,每一项都有系在多项式中,每个单项式都是这个多项式的项,每一项都有系数,但对整个多项式来说,没有系数的概念,只有次数的概念。数,但对整个多项式来说,没有系数的概念,只有次数的概念。多项式中次数最高的项的次数。多项式中次数最高的项的次数。注意的问题:注意的问题:nyx322yxm45145372abbp
3、abanm46aayxbyx43ba322yx23yx 与 yzx2yx2 与 mn10mn32 与 5)(a5)3(与 yx23 与 25.0yx-125与;21;2;21;xxxxyyxa a 32ab 32bca732ba yx2221 131 3167 54312.1.165.3222222 xyxDbabbaCxxBxxA;,常数项是,常数项是项式,最高次项是项式,最高次项是次次是是;,常数项是,常数项是项式,最高次项是项式,最高次项是次次是是_31)2(_2)1(223325 yxxxyyx 四四三三3xy 52四四三三322yx 313.1.3.3.211.2baFabEaDaC
4、abBbaA ).521(mm,21,mm).523(m323232)3(xyyx与与22102)2(与与 2232)4(yxyx 与与323222)1(yxba与与;0;212213;123;527;642;523222222532 ababxxxabababababxxxaaa222222223)2(233123)1(bbabbaayxxyxyyx yx2)233123()1(解:原式解:原式yx261)312()233()1(2222xyxyyxyx 解:原式解:原式223523xyyx 222222223)2(233123)1(bbabbaayxxyxyyx )22()()3()2(2
5、2bbbbaaa 解:原式解:原式ba2)22()()3()2(22bbbbaaa 解:原式解:原式24ba dcbadcba )()1(bacbac 2)(2)2(2343)2(43)3(22 xxxxcbacba )()4()2(3)22)(2()3()123)(1(222222abbaabbaxxxx 234)1(2 xx原式原式解:解:224)2(abba 原式原式2)1(323,1222xxxx 化简:化简:23323222xxxx 解:原式解:原式22223323xxxx 32)233(222 xxxx3242 xx;2)643(31)14(3,1232 xxxxx的值,其中的值,
6、其中求多项式求多项式2343123232 xxxx解:原式解:原式2312343223 xxxx1123523 xxx1)2(12)2(35)2(23 原式原式1243208 3239;12,12322 xxBxxA)12(2)123(222 xxxxBA解:解:22412322 xxxx21224322 xxxx1472 xx2532 xx3422 xx342)253(22 xxxxA解:因为解:因为)253(34222 xxxxA所以所以25334222 xxxxA23543222 xxxxA12 xxA分钟分钟元元分钟分钟元元分钟分钟元元分钟分钟元元/)51.(/)51.(/)45.(/
7、)45.(mnDmnCmnBmnA ,)%)(201(nmx mnx 4531333112222xxxxx)3133()31()12(222xxxxx32)313311()()32(222xxxxx442x32442x54)23(44422xa0b 4.4.已知数已知数a,ba,b在数轴上的位置如图所示在数轴上的位置如图所示abbaa32;323bxax_23bxax23bxax323bxax=-7xyx532233xxyxyx582)58(3)33(5)53(2222xyxxxyxyxxyxxxyxyx15241515106222)151510()24156(222xyxyxyxxxxyx10452)568()1468(22xxaxx568146822xxaxx)914()66()88(22xaxxx5)66(xamn)y3yn23)2(22xxxxymx与)323()2(22ynxyxxxymxynxyxxxymx323222yxxynxm3)22()3(2mn3)1(1.1.指出下各式的关系指出下各式的关系(相等、相反数、不确定相等、相反数、不确定):):(1)a-b与与b-a(2)-a-b与与-(b-a)(3)(a-b)与与b-a(4)(a-b)与与b-a,93232的的值值是是若若 xx的的值值是是则则7692 xx2.补充两题补充两题: