一元线性回归模型汇总课件.ppt

上传人(卖家):晟晟文业 文档编号:4669530 上传时间:2022-12-31 格式:PPT 页数:150 大小:1.11MB
下载 相关 举报
一元线性回归模型汇总课件.ppt_第1页
第1页 / 共150页
一元线性回归模型汇总课件.ppt_第2页
第2页 / 共150页
一元线性回归模型汇总课件.ppt_第3页
第3页 / 共150页
一元线性回归模型汇总课件.ppt_第4页
第4页 / 共150页
一元线性回归模型汇总课件.ppt_第5页
第5页 / 共150页
点击查看更多>>
资源描述

1、第二章第二章 经典单方程计量经济学模型:经典单方程计量经济学模型:一元线性回归模型一元线性回归模型 回归分析概述回归分析概述 一元线性回归模型的参数估计一元线性回归模型的参数估计 一元线性回归模型检验一元线性回归模型检验 一元线性回归模型预测一元线性回归模型预测 实例实例2.1 2.1 回归分析概述回归分析概述一、一、变量间的关系及回归分析的基本概念变量间的关系及回归分析的基本概念二、二、总体回归函数(总体回归函数(PRFPRF)三、三、随机扰动项随机扰动项四、四、样本回归函数(样本回归函数(SRFSRF)一、变量间的关系及回归分析的基本概念一、变量间的关系及回归分析的基本概念1.变量间的关系

2、变量间的关系(1)确定性关系确定性关系或函数关系函数关系:研究的是确定现象非随机变量间的关系。2,半径半径圆面积f(2)统计依赖)统计依赖或相关关系:相关关系:研究的是非确定现象随机变量间的关系。施肥量阳光降雨量气温农作物产量,f 对变量间对变量间统计依赖关系统计依赖关系的考察主要是通过的考察主要是通过相关相关分析分析(correlation analysis)或或回归分析回归分析(regression analysis)来完成的来完成的 正相关 线性相关 不相关 相关系数:统计依赖关系 负相关 11XY 有因果关系 回回归归分分析析 正相关 无因果关系 相相关关分分析析 非线性相关 不相关

3、负相关 注意注意不线性相关并不意味着不相关。有相关关系并不意味着一定有因果关系。回归分析回归分析/相关分析相关分析研究一个变量对另一个(些)变量的统计依赖关系,但它们并不意味着一定有因果关系。相关分析相关分析对称地对待任何(两个)变量,两个变量都被看作是随机的。回归分析回归分析对变量的处理方法存在不对称性,即区分应变量(被解释变量)和自变量(解释变量):前者是随机变量,后者不是。1.经济变量间的相互关系经济变量间的相互关系 确定性的函数关系确定性的函数关系 不确定性的统计关系不确定性的统计关系相关关系相关关系 (为随机变量为随机变量)没有关系没有关系 一、回归与相关一、回归与相关 (对统计学的

4、回顾)(对统计学的回顾)()Yf X()Yf X2.2.相关关系相关关系 相关关系的描述相关关系的描述 相关关系最直观的描述方式相关关系最直观的描述方式坐标图坐标图(散布图)散布图)YX2.2.相关关系相关关系 相关关系的描述相关关系的描述 相关关系最直观的描述方式相关关系最直观的描述方式坐标图坐标图(散布图)散布图)YX 从变量相关的程度看从变量相关的程度看.完全相关完全相关 不相关不相关 不完全相关不完全相关 3.3.相关程度的度量相关程度的度量相关系数相关系数 总体线性相关系数总体线性相关系数:其中:其中:X 的方差;的方差;Y的方差的方差 X和和Y的协方差的协方差样本线性相关系数样本线

5、性相关系数:其中:其中:和和 分别是变量分别是变量 和和 的样本观测值的样本观测值 和和 分别是变量分别是变量 和和 样本值的平均值样本值的平均值Cov(,)Var()Var()X YXYVar()XVar()YCov(,)X Y_22()()()()iiXYiiXXYYXXYY_YiXiYXXYXY(一)复相关系数 复相关系数是指在具有多元相关关系的变量中,用来测定因变量y与一组自变量 之间相关程度的指标。复相关系数的计算公式为:xxxxm321 复相关系数的取值是介于-1和+1之间,和简单相关系数一样,也是用其绝对值的大小来判断相关的密切程度。22123,)()(1yyyyrcmy(二)偏

6、相关系数 偏相关系数是在多个变量中,当其他变量保持不变的情况下,测定任意两个变量之间的相关程度的指标。偏相关系数取值是介于-1和+1之间,和简单相关系数一样,也是用其数值的大小来判断相关的密切程度。设有三个变量 ,如果在这三个变量中,剔除 的影响,可计算 ,对 偏相关系数,记作 ,其计算公式为:xxx321,x3x1x2x3r3,12223,12)(1)(13231323121xxxxxxxxxxrrrrrr ,如果在这三个变量中,剔除 的影响,可计算 ,对 偏相关系数,记作 ,其计算公式为:x3x1x2r3,12x2r2,13222,13)(1)(12321232131xxxxxxxxxxr

7、rrrrr 如果在这三个变量中,剔除 的影响,可计算 ,对 偏向关系数,记作 ,其计算公式为:x1x2x3x1r1,23221,23)(1)(11312131232xxxxxxxxxxrrrrrr 相关系数的特点:1.相关系数取值为-11 2.当r=0时,表明X与Y没有线性相关关系 3.当0|r|0称为正相关,否则称为负相关 4.当|r|=1时,表明完全线性相关.r=1完全正相关,r=-1完全负相关.利用相关系数判断相关关系的密切程度,通常认为:相关系数的值直线相关程度=0完全不相关0 0.3微弱相关0.3 0.5低度相关0.5 0.8显著相关0.8 1高度相关=1完全相关 和和 都是相互对称

8、的随机变量都是相互对称的随机变量 线性线性相关系数只反映变量间的线性相关程度,不相关系数只反映变量间的线性相关程度,不 能说明非能说明非 线性相关关系线性相关关系 样本相关系数是总体相关系数的样本估计值,由样本相关系数是总体相关系数的样本估计值,由 于抽样波动,样本相关系数是个随机变量,其统于抽样波动,样本相关系数是个随机变量,其统 计显著性有待检验计显著性有待检验 相关系数只能反映线性相关程度,不能确定因果相关系数只能反映线性相关程度,不能确定因果 关系,不能说明相关关系具体接近哪条直线关系,不能说明相关关系具体接近哪条直线 计量经济学关心:计量经济学关心:变量间的因果关系及隐藏在随变量间的

9、因果关系及隐藏在随机性后面的统计规律性,这有赖于回归分析方法机性后面的统计规律性,这有赖于回归分析方法 使用相关系数时应注意使用相关系数时应注意XY2.回归分析的基本概念回归分析的基本概念 回归分析回归分析(regression analysis)(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。其目的其目的在于通过后者的已知或设定值,去估计和(或)预测前者的(总体)均值。被解释变量被解释变量(Explained Variable)或应变应变量量(Dependent Variable)。解释变量解释变量(Explanatory Vari

10、able)或自变自变量量(Independent Variable)。回归分析构成计量经济学的方法论基础,其回归分析构成计量经济学的方法论基础,其主要内容包括:主要内容包括:(1)根据样本观察值对经济计量模型参数进行估计,求得回归方程;(2)对回归方程、参数估计值进行显著性检验;(3)利用回归方程进行分析、评价及预测。二、总体回归函数二、总体回归函数 回归分析回归分析关心的是根据解释变量的已知或关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值给定值,考察被解释变量的总体均值,即当解释变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。例例2.1:一个假想的社区

11、有100户家庭组成,要研究该社区每月家庭消费支出家庭消费支出Y与每月家庭可家庭可支配收入支配收入X的关系。即如果知道了家庭的月收入,能否预测该社区家庭的平均月消费支出水平。为达到此目的,将该100户家庭划分为组内收入差不多的10组,以分析每一收入组的家庭消费支出。表表 2.1.1 某某社社区区家家庭庭每每月月收收入入与与消消费费支支出出统统计计表表 每月家庭可支配收入X(元)800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 110

12、0 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629 935 1012 1210 1408 1650 1848 2101 2354 2860 968 1045 1243 1474 1672 1881 2189 2486 2871 1078 1254 1496 1683 1925 2233 2552 1122 1298 1496 1716 1969 2244 2585 1155 1331 1562 1

13、749 2013 2299 2640 1188 1364 1573 1771 2035 2310 1210 1408 1606 1804 2101 1430 1650 1870 2112 1485 1716 1947 2200 每 月 家 庭 消 费 支 出 Y(元)2002 共计 2420 4950 11495 16445 19305 23870 25025 21450 21285 15510 由于不确定因素的影响,对同一收入水平X,不同家庭的消费支出不完全相同;但由于调查的完备性,给定收入水平X的消费支出Y的分布是确定的,即以X的给定值为条件的Y的条件分布条件分布(Conditional

14、distribution)是已知的,例如:P(Y=561|X=800)=1/4。因此,给定收入X的值Xi,可得消费支出Y的条件均值条件均值(conditional mean)或条件期望条件期望(conditional expectation):E(Y|X=Xi)。该例中:E(Y|X=800)=561 描出散点图发现:随着收入的增加,消费“平平均地说均地说”也在增加,且Y的条件均值均落在一根正斜率的直线上。这条直线称为总体回归总体回归线线。05001000150020002500300035005001000150020002500300035004000每月可支配收入X(元)每月消费支出Y(元

15、)在给定解释变量Xi条件下被解释变量Yi的期望轨迹称为总体回归线总体回归线(population regression line),或更一般地称为总体回归曲线总体回归曲线(population regression curve)。)()|(iiXfXYE称为(双变量)总体回归函数总体回归函数(population regression function,PRF)。相应的函数:含义:含义:回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。函数形式:函数形式:可以是线性或非线性的。例2.1中,将居民消费支出看成是其可支配收入的线性函数时:iiXXYE10)|(为一

16、线性函数。线性函数。其中,0,1是未知参数,称为回归系数回归系数(regression coefficients)。三、随机扰动项三、随机扰动项 总体回归函数说明在给定的收入水平Xi下,该社区家庭平均的消费支出水平。但对某一个别的家庭,其消费支出可能与该平均水平有偏差。称为观察值围绕它的期望值的离差离差(deviation),是一个不可观测的随机变量,又称为随机干扰项随机干扰项(stochastic disturbance)或随机误差项随机误差项(stochastic error)。)|(iiiXYEY 例2.1中,给定收入水平Xi,个别家庭的支出可表示为两部分之和:(1)该收入水平下所有家庭

17、的平均消费支出E(Y|Xi),称为系统性系统性(systematic)或确定性(确定性(deterministic)部分;部分;(2)其他随机随机或非确定性非确定性(nonsystematic)部部分分 i。称为总体回归函数(PRF)的随机设定形式。表明被解释变量除了受解释变量的系统性影响外,还受其他因素的随机性影响。由于方程中引入了随机项,成为计量经济学模型,因此也称为总体回归模型。随机误差项主要包括下列因素:随机误差项主要包括下列因素:在解释变量中被忽略的因素的影响;变量观测值的观测误差的影响;模型关系的设定误差的影响;其他随机因素的影响。产生并设计随机误差项的主要原因:产生并设计随机误差

18、项的主要原因:理论的含糊性;数据的欠缺;节省原则。四、样本回归函数(四、样本回归函数(SRF)问题:问题:能从一次抽样中获得总体的近似的信息吗?如果可以,如何从抽样中获得总体的近似信息?例例2.2:在例2.1的总体中有如下一个样本,能否从该样本估计总体回归函数PRF?表表2.1.3 家家庭庭消消费费支支出出与与可可支支配配收收入入的的一一个个随随机机样样本本 Y 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 X 594 638 1122 1155 1408 1595 1969 2078 2585 2530 回答:能 该样本的散点图散点图(sc

19、atter diagram):画一条直线以尽好地拟合该散点图,由于样本取自总体,可以该直线近似地代表总体回归线。该直线称为样本回归线样本回归线(sample regression lines)。)。记样本回归线的函数形式为:iiiXXfY10)(称为样本回归函数样本回归函数(sample regression function,SRF)。注意:注意:这里将样本回归线样本回归线看成总体回归线总体回归线的近似替代则 样本回归函数的随机形式样本回归函数的随机形式/样本回归模型:样本回归模型:同样地,样本回归函数也有如下的随机形式:iiiiieXYY10式中,ie称为(样样本本)残残差差(或剩剩余余)

20、项项(residual),代表了其他影响iY的随机因素的集合,可看成是i的估计量i。由于方程中引入了随机项,成为计量经济模型,因此也称为样本回归模型样本回归模型(sample regression model)。回归分析的主要目的回归分析的主要目的:根据样本回归函数SRF,估计总体回归函数PRF。即,根据 iiiiieXeYY10估计iiiiiXXYEY10)|(注意:注意:这里PRF可能永远无法知道。2.2 2.2 一元线性回归模型的参数估计一元线性回归模型的参数估计 一、一、一元线性回归模型的基本假设一元线性回归模型的基本假设 二、二、参数的普通最小二乘估计(参数的普通最小二乘估计(OLS

21、OLS)三、三、参数估计的最大或然法参数估计的最大或然法(ML)(ML)四、四、最小二乘估计量的性质最小二乘估计量的性质 五、五、参数估计量的概率分布及随机干参数估计量的概率分布及随机干 扰项方差的估计扰项方差的估计 说说 明明 单方程计量经济学模型分为两大类:线性模型和非线性模型 线性模型中,变量之间的关系呈线性关系 非线性模型中,变量之间的关系呈非线性关系 一元线性回归模型:只有一个解释变量iiiXY10i=1,2,nY为被解释变量,X为解释变量,0与1为待估待估参数参数,为随机干扰项随机干扰项 回归分析的主要目的回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归

22、函数(模型)PRF。估计方法估计方法有多种,其中最广泛使用的是普通最普通最小二乘法小二乘法(ordinary least squares,OLS)。为保证参数估计量具有良好的性质,通常对模型提出若干基本假设。实际这些假设与所采用的估计方法紧密相关。一、线性回归模型的基本假设一、线性回归模型的基本假设 假设1.解释变量X是确定性变量,不是随机变量;假设2.随机误差项具有零均值、同方差和不序列相关性:E(i)=0 i=1,2,n Var(i)=2 i=1,2,n Cov(i,j)=0 ij i,j=1,2,n 假设3.随机误差项与解释变量X之间不相关:Cov(Xi,i)=0 i=1,2,n 假设4

23、.服从零均值、同方差、零协方差的正态分布 iN(0,2)i=1,2,n1.如果假设1、2满足,则假设3也满足;2.如果假设4满足,则假设2也满足。注意:注意:以上假设也称为线性回归模型的经典假经典假设设或高斯(高斯(Gauss)假设)假设,满足该假设的线性回归模型,也称为经典线性回归模型经典线性回归模型(Classical Linear Regression Model,CLRM)。另外另外,在进行模型回归时,还有两个暗含的假设:假设5.随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即nQnXXi,/)(2 假设6.回归模型是正确设定的 假设5旨在排除时间序列数据出现持续上升或下

24、降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题伪回归问题(spurious regression problem)。假设6也被称为模型没有设定偏误设定偏误(specification error)一、线性回归模型及其普遍性一、线性回归模型及其普遍性1 1、线性回归模型的特征、线性回归模型的特征 一个例子一个例子 凯恩斯绝对收入假设消费理论:消费(C)是由收入(Y)唯一决定的,是收入的线性函数:C=+Y (2.2.1)但实际上上述等式不能准确实现但实际上上述等式不能准确实现。原因原因 消费除受收入影响外,还受其他因素的影响;线性关系只是一个近似描述;

25、收入变量观测值的近似性:收入数据本身并不绝对准确地反映收入水平。因此因此,一个更符合实际的数学描述为一个更符合实际的数学描述为:C=+Y+(2.2.2)其中:是一个随机误差项,是其他影响因素的“综合体”。线性回归模型的特征:线性回归模型的特征:通过引入随机误差项,将变量之间的关系用一通过引入随机误差项,将变量之间的关系用一个线性随机方程来描述,并用随机数学的方法来个线性随机方程来描述,并用随机数学的方法来估计方程中的参数;估计方程中的参数;在线性回归模型中,被解释变量的特征由解释在线性回归模型中,被解释变量的特征由解释变量与随机误差项共同决定。变量与随机误差项共同决定。2 2、线性回归模型的普

26、遍性、线性回归模型的普遍性 线性回归模型线性回归模型是计量经济学模型的主要形式,是计量经济学模型的主要形式,许多实际经济活动中经济变量间的复杂关系都可以许多实际经济活动中经济变量间的复杂关系都可以通过一些简单的数学处理,使之化为数学上的线性通过一些简单的数学处理,使之化为数学上的线性关系。关系。将非线性关系化为线性关系的常用的数学处理方法将非线性关系化为线性关系的常用的数学处理方法变量置换变量置换例如,例如,描述税收与税率关系的拉弗曲线拉弗曲线:抛物线 s=a+b r+c r2 c0 s:税收;r:税率设X1=r,X2=r2,则原方程变换为 s=a+b X1+c X2 c t/2(n-2),则

27、拒绝H0,接受H1;若|t|t/2(n-2),则拒绝H1,接受H0;对于一元线性回归方程中的0,可构造如下t统计量进行显著性检验:在上述收入消费支出例中,首先计算2的估计值 134022107425000777.04590020222221222nxyneiii)2(0022200ntSxnXtii41.98742500010/53650000134022220iixnXSt统计量的计算结果分别为:29.180425.0777.0111St048.141.9817.103000St 给定显著性水平=0.05,查t分布表得临界值 t 0.05/2(8)=2.306|t1|2.306,说明家庭可支

28、配收入在95%的置信度下显著,即是消费支出的主要解释变量;|t2|2.306,表明在95%的置信度下,无法拒绝截距项为零的假设。假设检验可以通过一次抽样的结果检验总体参数可能的假设值的范围(如是否为零),但它并没有指出在一次抽样中样本参数值到底离总体参数的真值有多“近”。三、参数的置信区间三、参数的置信区间 要判断样本参数的估计值在多大程度上可以“近似”地替代总体参数的真值,往往需要通过构造一个以样本参数的估计值为中心的“区间”,来考察它以多大的可能性(概率)包含着真实的参数值。这种方法就是参数检验的置信置信区间估计区间估计。1)(P 如果存在这样一个区间,称之为置信区间置信区间(confid

29、ence interval);1-称为置信系数置信系数(置信度置信度)(confidence coefficient),称为显著性水平显著性水平(level of significance);置信区间的端点称为置信限置信限(confidence limit)或临界值临界值(critical values)。一元线性模型中一元线性模型中,i(i=1,2)的置信区间的置信区间:在变量的显著性检验中已经知道:)2(ntstiii 意味着,如果给定置信度(1-),从分布表中查得自由度为(n-2)的临界值,那么t值处在(-t/2,t/2)的概率是(1-)。表示为:P ttt()221即P tstiii(

30、)221Ptstsiiiii()221于是得到:(1-)的置信度下,i的置信区间是(,)iitstsii22在上述收入收入-消费支出消费支出例中,如果给定=0.01,查表得:355.3)8()2(005.02tnt由于042.01S41.980S于是,1、0的置信区间分别为:(0.6345,0.9195)(-433.32,226.98)由于置信区间一定程度地给出了样本参数估计值与总体参数真值的“接近”程度,因此置信区间越小越好。要缩小置信区间,需要(1)增大样本容量)增大样本容量n。因为在同样的置信水平下,n越大,t分布表中的临界值越小;同时,增大样本容量,还可使样本参数估计量的标准差减小;(

31、2)提高模型的拟合优度。)提高模型的拟合优度。因为样本参数估计量的标准差与残差平方和呈正比,模型拟合优度越高,残差平方和应越小。由于置信区间一定程度地给出了样本参数估计值与总体参数真值的“接近”程度,因此置信区间越小越好。要缩小置信区间,需 (1)增大样本容量)增大样本容量n,因为在同样的置信水平下,n越大,t分布表中的临界值越小;同时,增大样本容量,还可使样本参数估计量的标准差减小;(2)提高模型的拟合优度)提高模型的拟合优度,因为样本参数估计量的标准差与残差平方和呈正比,模型拟合优度越高,残差平方和应越小。2.4 2.4 一元线性回归分析的应用:预一元线性回归分析的应用:预测问题测问题 一

32、、一、0 0是条件均值是条件均值E(Y|X=X0)或个值或个值Y0的一个无偏估计的一个无偏估计二、二、总体条件均值与个值预测值的置信总体条件均值与个值预测值的置信区间区间 对于一元线性回归模型 iiXY10给定样本以外的解释变量的观测值X0,可以得到被解释变量的预测值0 0,可以此作为其条件均条件均值值E(Y|X=X0)或个别值个别值Y0的一个近似估计。严格地说,这只是被解释变量的预测值的估计值,而不是预测值。原因:(1)参数估计量不确定;(2)随机项的影响说说 明明 一、一、0 0是条件均值是条件均值E(Y|X=X0)或个值或个值Y0的一个无偏估计的一个无偏估计对总体回归函数总体回归函数E(

33、Y|X=X0)=0+1X,X=X0时 E(Y|X=X0)=0+1X00100XY于是0101000100)()()()(XEXEXEYE可见,可见,0是条件均值是条件均值E(Y|X=X0)的无偏估计。的无偏估计。对总体回归模型总体回归模型Y=0+1X+,当X=X0时0100XY于是0100100100)()()(XEXXEYE0101000100)()()()(XEXEXEYE 二、总体条件均值与个值预测值的置信二、总体条件均值与个值预测值的置信区间区间 1、总体均值预测值的置信区间、总体均值预测值的置信区间 由于 0100XY),(2211ixN),(22200iixnXN于是0101000

34、)()()(XEXEYE)(),(2)()(12010000VarXCovXVarYVar可以证明 2210/),(ixXCov因此 222022022202)(iiiixXxXXxnXYVar200222222XXXXnXnXxii)(20222XXnxxii)(1(2202ixXXn故)(1(,(22020100ixXXnXNY)2()(00100ntSXYtY)(1(22020iYxXXnS于是,在1-的置信度下,总体均值总体均值E(Y|X0)的置的置信区间为信区间为 0202000)|(YYStYXYEStY其中2、总体个值预测值的预测区间、总体个值预测值的预测区间 由 Y0=0+1X

35、0+知:),(20100XNY于是)(11(,0(220200ixXXnNYY)2(0000ntSYYtYY式中:)(11(220200iYYxXXnS从而在1-的置信度下,Y0的置信区间的置信区间为 002020000YYYYStYYStY在上述收入收入消费支出消费支出例中,得到的样本回归函数为:iiXY777.0172.103 则在 X0=1000处,0=103.172+0.7771000=673.84 29.37277425000)21501000(10113402)(20YVar而05.61)(0YS 因此,总体均值总体均值E(Y|X=1000)的95%的置信区间为:673.84-2.

36、30661.05 E(Y|X=1000)673.84+2.30661.05或 (533.05,814.62)同样地,对于Y在X=1000的个体值个体值,其95%的置信区间为:673.84-2.30661.05Yx=1000 673.84+2.30661.05或 (372.03,975.65)总体回归函数的置信带(域)置信带(域)(confidence band)个体的置信带(域)置信带(域)对于Y的总体均值E(Y|X)与个体值的预测区间(置信区间):(1)样本容量n越大,预测精度越高,反之预测精度越低;(2)样本容量一定时,置信带的宽度当在X均值处最小,其附近进行预测(插值预测)精度越大;X越

37、远离其均值,置信带越宽,预测可信度下降。2.5 2.5 实例:时间序列问题实例:时间序列问题 一、一、中国居民人均消费模型中国居民人均消费模型 二、二、时间序列问题时间序列问题 一、中国居民人均消费模型一、中国居民人均消费模型 例例2.5.1 考察中国居民收入与消费支出的关系。GDPP:人均国内生产总值人均国内生产总值(1990年不变价)CONSP:人均居民消费人均居民消费(以居民消费价格指数(1990=100)缩减)。表表2.5.1 中中国国居居民民人人均均消消费费支支出出与与人人均均GDP(元元/人人)年份 人均居民消费 CONSP 人均GDP GDPP 年份 人均居民消费 CONSP 人

38、均GDP GDPP 1978 395.8 675.1 1990 797.1 1602.3 1979 437.0 716.9 1991 861.4 1727.2 1980 464.1 763.7 1992 966.6 1949.8 1981 501.9 792.4 1993 1048.6 2187.9 1982 533.5 851.1 1994 1108.7 2436.1 1983 572.8 931.4 1995 1213.1 2663.7 1984 635.6 1059.2 1996 1322.8 2889.1 1985 716.0 1185.2 1997 1380.9 3111.9 198

39、6 746.5 1269.6 1998 1460.6 3323.1 1987 788.3 1393.6 1999 1564.4 3529.3 1988 836.4 1527.0 2000 1690.8 3789.7 1989 779.7 1565.9 1.建立模型建立模型 拟建立如下一元回归模型 GDPPCCONSP采用Eviews软件软件进行回归分析的结果见下表 该两组数据是19782000年的时间序列数据时间序列数据(time series data);前述收入收入消费支出例消费支出例中的数据是截面数据截面数据(cross-sectional data)。表表2.5.2 中中国国居居民民人

40、人均均消消费费支支出出对对人人均均GDP的的回回归归(19782000)LS/Dependent Variable is CONSP Sample:1978 2000 Included observations:23 V ariable Coefficient Std.Error t-Statistic Prob.C 201.1071 14.88514 13.51060 0.0000 GDPP1 0.386187 0.007222 53.47182 0.0000 R-squared 0.992709 Mean dependent var 905.3331 Adjusted R-squared

41、0.992362 S.D.dependent var 380.6428 S.E.of regression 33.26711 Akaike info criterion 7.092079 Sum squared resid 23240.71 Schwarz criterion 7.190818 Log likelihood -112.1945 F-statistic 2859.235 Durbin-W atson stat 0.550288 Prob(F-statistic)0.000000 一般可写出如下回归分析结果:(13.51)(53.47)R2=0.9927 F=2859.23DW=0

42、.5503 R2=0.9927T值:C:13.51,GDPP:53.47 临界值:t0.05/2(21)=2.08斜率项:00.38621,符合绝对收入假说 2.模型检验模型检验 3.预测预测 2001年:GDPP=4033.1(元)(1990年不变价)点估计:CONSP2001=201.107+0.38624033.1 =1758.7(元)2001年实测实测的CONSP(1990年价):1782.2元,相对误差相对误差:-1.32%。2001年人均居民消费的预测区间预测区间 人均GDP的样本均值样本均值与样本方差样本方差:E(GDPP)=1823.5 Var(GDPP)=982.042=96

43、4410.4 在95%的置信度下,E(CONSP2001)的预测的预测区间区间为:)4.964410)123()5.18231.4033(231(22371.23240306.27.17582 =1758.740.13或:(1718.6,1798.8)同样地,在95%的置信度下,CONSP2001的的预测区间预测区间为:)4.964410)123()5.18231.4033(2311(22371.23240306.27.17582 =1758.786.57或 (1672.1,1845.3)二、时间序列问题二、时间序列问题 上述实例表明,时间序列完全可以进行类似于截面数据的回归分析。然而,在时间

44、序列回归分析中,有两个需注意的问题:第一,关于抽样分布的理解问题。第一,关于抽样分布的理解问题。能把表2.5.1中的数据理解为是从某个总体中抽出的一个样本吗?可决系数R2,考察被解释变量Y的变化中可由解释变量X的变化“解释解释”的部分。这里“解释解释”能否换为“引起引起”?第二,关于第二,关于“伪回归问题伪回归问题”(spurious spurious regression problemregression problem)。)。作业:P52页 1,10,11 在现实经济问题中,对时间序列数据作回归,即使两个变量间没有任何的实际联系,也往往会得到较高的可决系数,尤其对于具有相具有相同变化趋势(同时上升或下降)的变量同变化趋势(同时上升或下降)的变量,更是如此。这种现象被称为“伪回归伪回归”或“虚假回归虚假回归”。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(一元线性回归模型汇总课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|