《数学分析》第十四章幂级数2课件.ppt

上传人(卖家):晟晟文业 文档编号:4692761 上传时间:2023-01-01 格式:PPT 页数:27 大小:229.61KB
下载 相关 举报
《数学分析》第十四章幂级数2课件.ppt_第1页
第1页 / 共27页
《数学分析》第十四章幂级数2课件.ppt_第2页
第2页 / 共27页
《数学分析》第十四章幂级数2课件.ppt_第3页
第3页 / 共27页
《数学分析》第十四章幂级数2课件.ppt_第4页
第4页 / 共27页
《数学分析》第十四章幂级数2课件.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、2 函数的幂级数展开函数的幂级数展开一、泰勒级数一、泰勒级数上节例题上节例题)11()1ln()1(11 xxnxnnnnnnxxaxf)()(00 存在幂级数在其收敛存在幂级数在其收敛域内以域内以f(x)为和函数为和函数问题问题:1.如果能展开如果能展开,是什么是什么?na2.展开式是否唯一展开式是否唯一?3.在什么条件下才能展开成幂级数在什么条件下才能展开成幂级数?证明证明即即内收敛于内收敛于在在),()()(000 xfxuxxannn nnxxaxxaaxf)()()(0010定理定理 1 1 如果函数如果函数)(xf在在)(0 xU 内具有任意阶导内具有任意阶导数数,且在且在)(0

2、xU 内内能能展开成展开成)(0 xx 的幂级数的幂级数,即即 nnnxxaxf)()(00 则其系数则其系数 ),2,1,0()(!10)(nxfnann且展开式是唯一的且展开式是唯一的.)(23)1(!)(01)(xxannanxfnnn即得即得令令,0 xx ),2,1,0()(!10)(nxfnann泰勒系数是唯一的泰勒系数是唯一的,.)(的展开式是唯一的的展开式是唯一的xf 10021)()(2)(nnxxnaxxaaxf逐项求导任意次逐项求导任意次,得得泰勒系数泰勒系数 如果如果)(xf在点在点0 x处任意阶可导处任意阶可导,则幂级数则幂级数nnnxxnxf)(!)(000)(称为

3、称为)(xf在点在点0 x的的泰勒级数泰勒级数.nnnxnf 0)(!)0(称为称为)(xf在点在点00 x的的麦克劳林级数麦克劳林级数.问题问题nnnxxnxfxf)(!)(?)(000)(定义定义泰勒级数在收敛区间是否收敛于泰勒级数在收敛区间是否收敛于f(x)?不一定不一定.0,00,)(21xxexfx例如例如),2,1,0(0)0()(nfn且且 00)(nnxxf的麦氏级数为的麦氏级数为.0)(),(xs内和函数内和函数该级数在该级数在可见可见).()(,0 xfxfs于于的麦氏级数处处不收敛的麦氏级数处处不收敛外外除除 在在x=0点任意可导点任意可导,定理定理 2 2 )(xf在点

4、在点0 x的泰勒级数的泰勒级数,在在)(0 xU 内收内收敛于敛于)(xf在在)(0 xU 内内0)(lim xRnn.证明证明必要性必要性)()(!)()(000)(xRxxixfxfninii ),()()(1xsxfxRnn ,)(能展开为泰勒级数能展开为泰勒级数设设xf)()(lim1xfxsnn )(limxRnn)()(lim1xsxfnn ;0 充分性充分性),()()(1xRxsxfnn )()(lim1xsxfnn )(limxRnn ,0),()(lim1xfxsnn 即即).()(xfxf的泰勒级数收敛于的泰勒级数收敛于定理定理 3 3 设设)(xf在在)(0 xU上有定

5、义上有定义,0 M,对对),(00RxRxx ,恒有恒有 Mxfn)()(),2,1,0(n,则则)(xf在在),(00RxRx 内可展内可展开成点开成点0 x的泰勒级数的泰勒级数.证明证明10)1()()!1()()(nnnxxnfxR,)!1(10 nxxMn),(00RxRxx ,),()!1(010收敛收敛在在 nnnxx,0)!1(lim10 nxxnn,0)(lim xRnn故故.0的泰勒级数的泰勒级数可展成点可展成点x),(00RxRxx 二、函数展开成幂级数二、函数展开成幂级数1.1.直接法直接法(泰勒级数法泰勒级数法)步骤步骤:;!)()1(0)(nxfann 求求,)(0l

6、im)2()(MxfRnnn 或或讨论讨论).(xf敛于敛于则级数在收敛区间内收则级数在收敛区间内收例例1解解.)(展开成幂级数展开成幂级数将将xexf,)()(xnexf),2,1,0(.1)0()(nfn nxxnxxe!1!2112,0 M上上在在,MM xnexf)()(Me),2,1,0(n nxxnxxe!1!2112由于由于M的任意性的任意性,即得即得),(!1!2112 xxnxxenx例例2.sin)(的幂级数的幂级数展开成展开成将将xxxf 解解),2sin()()(nxxfn,2sin)0()(nfn,0)0()2(nf,)1()0()12(nnf ),2,1,0(n)(

7、)(xfn且且)2sin(nx1),(x )!12()1(!51!31sin1253nxxxxxnn),(x例例3.)()1()(的幂级数的幂级数展开成展开成将将xRxxf 解解,)1)(1()1()()(nnxnxf ),1()1()0()(nfn),2,1,0(n nxnnxx!)1()1(!2)1(12nnnaa1lim 1 nn,1,1 R若若内内在在,)1,1(nxnnxxs!)1()1(1)(1)!1()1()1()1()(nxnnxxs nxnnxxxsx)!1()1()1()1()(2 !)1()1(!)()1()!1()1()1(nnmmmnnmmnnmm 利用利用)()1(

8、xsx 1222!)1()1(!2)1(nxnnxx)(xs ,1)()(xxsxs .1)0(s且且两边积分两边积分,1)()(00dxxdxxsxsxx )1,1(x得得),1ln()0(ln)(lnxsxs 即即,)1ln()(ln xxs,)1()(xxs )1,1(x nxnnxxx!)1()1(!2)1(1)1(2)1,1(x牛顿二项式展开式牛顿二项式展开式注意注意:.1的取值有关的取值有关处收敛性与处收敛性与在在 x);1,1(1 收收敛敛区区间间为为;1,1(11 收收敛敛区区间间为为.1,11 收收敛敛区区间间为为有有时时当当,21,1 )1,1()1(11132 nnxxx

9、xx 1,1!)!2(!)!32()1(64231421211132 nnxnnxxxx 1,1!)!2(!)!12()1(64253142312111132 nnxnnxxxx双阶乘双阶乘2.2.间接法间接法根据唯一性根据唯一性,利用常见展开式利用常见展开式,通过通过变量代换变量代换,四则运算四则运算,恒等变形恒等变形,逐项求导逐项求导,逐项积分逐项积分等方等方法法,求展开式求展开式.例如例如)(sincos xx )!2()1(!41!211cos242nxxxxnn),(x )!12()1(!51!31sin1253nxxxxxnn xxdxx021arctan 12)1(5131125

10、3nxxxxnn1,1 x xxdxx01)1ln(nxxxxnn 132)1(31211,1(x例例4处展开成泰勒级数处展开成泰勒级数在在将将141)(xxxxf解解).1()1()(nfx并求并求的幂级数的幂级数展开成展开成 )1(3141 xx,)311(31 x)31()31(311 312 nxxx31 xxxxx 41)1(41 nnxxxx3)1(3)1(3)1()1(31332231 x!)1()(nfn于是于是.3!)1()(nnnf 故故,31n 三、小结三、小结1.如何求函数的泰勒级数如何求函数的泰勒级数;2.泰勒级数收敛于函数的条件泰勒级数收敛于函数的条件;3.函数展开

11、成泰勒级数的方法函数展开成泰勒级数的方法.思考题思考题什么叫幂级数的间接展开法?什么叫幂级数的间接展开法?思考题解答思考题解答 从已知的展开式出发从已知的展开式出发,通过变量代换、四则运通过变量代换、四则运算或逐项求导、逐项积分等办法算或逐项求导、逐项积分等办法,求出给定函数求出给定函数展开式的方法称之展开式的方法称之.一一、将将下下列列函函数数展展开开成成x的的幂幂级级数数,并并求求展展开开式式成成立立的的区区间间:1 1、xa;2 2、)1ln()1(xx ;3 3、xarcsin;4 4、3)1(1xx .二二、将将函函数数3)(xxf 展展开开成成)1(x的的幂幂级级数数,并并求求展展

12、开开式式成成立立的的区区间间 .三三、将将 函函 数数231)(2 xxxf展展 开开 成成)4(x的的 幂幂 级级数数 .四四、将将级级数数 11211)!12(2)1(nnnnnx的的和和函函数数展展开开成成)1(x的的幂幂级级数数 .练练 习习 题题练习题答案练习题答案一、一、1 1、)(!)(ln0 xxnannn;2 2、)11()1()1(111 xxnnxnnn;3 3、)11()2()12()!()!2(21122 xxnnnxnn;4 4、)1,1(112 nnxn.二、二、)1(231x 022)21(2)2)(1(3)!()!2()1(nnnnxnnnn)20(x.三、三、)2,6()4)(3121(011 nnnnx.四、四、02)1()!12(2)1(21sin2nnnnxn ),()1()!12(2)1(21cos012 nnnnxn.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(《数学分析》第十四章幂级数2课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|