高三数学下学期5月月考试题 理 新人教A版.doc

上传人(卖家):宝宝乐园 文档编号:4805704 上传时间:2023-01-13 格式:DOC 页数:21 大小:1.55MB
下载 相关 举报
高三数学下学期5月月考试题 理 新人教A版.doc_第1页
第1页 / 共21页
高三数学下学期5月月考试题 理 新人教A版.doc_第2页
第2页 / 共21页
高三数学下学期5月月考试题 理 新人教A版.doc_第3页
第3页 / 共21页
高三数学下学期5月月考试题 理 新人教A版.doc_第4页
第4页 / 共21页
高三数学下学期5月月考试题 理 新人教A版.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、高三下学期5月月考数学理试题一、选择题 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1设,是虚数单位,且是实数,则 (B )A B1 C D2 解析:=,依题意,有,故.选B.2对于非零向量 “”是“”的 ( A )A充分不必要条件 B. 必要不充分条件C充分必要条件 D. 既不充分也不必要条件解析:由得,故.反之不然.选A.3函数的单调递减区间为 ( C )A B和 C D 解析:,由,解得或.又,.选B.4. 化简= ( B )A B C D1解析:=.选B.5.已知、是两条不同的直线,、是两个不同的平面,给出下列命题:若,则;若,且则;若,

2、则;若,且,则.其中正确命题的序号是( B )A.B.C.D.解析:当时,不一定成立所以错误.成立.成立.当,时,可以相交,所以错误. 选 .6. 若函数的图象向右平移()个单位长度后,所得的图象关于轴对称,则 的最小值是( C )A B C D解析:=,函数的图象向右平移()个单位长度后,所得的函数解析式为.要使所得的图象关于轴对称,则有,即(),所以当时,取得最小值.选C.7.高三年级有6个班级参加学校运动会100米跑决赛,若在安排比赛赛道时不将甲班安排在第一及第二赛道上,且甲班和乙班不相邻,则不同的安排方法有 ( D )A96种 B 192种 C216种 D312种解析:甲班不排在第一及

3、第二赛道,且不与乙相邻,可先排甲,当甲排在第六赛道时共有种,当甲排在第三、四或五赛道时共有种,总的安排方法有96+216=312种.选D.8设二次函数的值域为的值域为,则的最大值为( )A B C D解析:因为二次函数的值域为,所以有,即,所以,所以=1.当时,等号成立,所以最大值为.选 .9.已知,且,则下列结论正确的是 ( D )A B C D解析:构造偶函数,则,当时,.在上单调递增,在上单调递减.由已知,得,.选D.10. 已知直线: ()与抛物线:交于两点,为抛物线 的焦点,若,则的值是 ( C )A B C D解析:依题意,直线 ()恒过定点(2,0)即为抛物线的焦点F.过两点分别

4、作准线的垂线,垂足分别为,再过作的垂线,垂足为,设.,.,.如图,在直角三角形中,.直线AB的斜率.选C.ABCDE11如图所示,在等腰梯形中,为的中点,将 与分别沿向上翻折,使重合,则形成的三棱锥的外接球的体积为 ( A )A B C D A(B )CDE解析:由已知,在平面图形中,依题意折叠后得到一个正四面体,如图.构造一个面对角线长为1的正方体(棱长为),则这个正方体与所得正四面体有同一外接球.易得正方体的外接球直径等于,半径等于.球的体积为.选A.12设是定义在上的偶函数,对,都有,且当时,若在区间(2,6内关于的方程恰有个不同的实数根,则的取值范围是 ( D )A(1,2) B(2,

5、) C(1,) D(,2)解析:对于任意的,都有,函数是一个周期函数,且T=4又时,且函数是定义在上的偶函数,若在区间(2,6内关于x的方程恰有个不同的实数根,则函数与在区间(-2,6上有三个不同的交点,如下图所示:又,则有,且.解得:.选D.二、填空题: 本大题共4小题,每小题5分,共20分.把 答案填在题中的横线上.13. 若的展开式中第三项的二项式系数是15,则展开式中所有项的系数和为 . 解析:展开式的通项公式为,知,解得 . 展开式中所有项的系数和为=.14. 已知关于的方程的两根分别为、,且,则的取值范围是 .解析:设=,依题意有且,作出点所满足的区域,易得.15.已知数列满足()

6、且,其前项之和为,则满足不等式的最小整数是 .解析:由已知递推式变形得,则,即.于是=,因此=,.满足条件的最小整数.16.已知是双曲线的左、右焦点,过的直线与左支交于、两点,若,则双曲线的离心率是 .解析:由4=3, 可设=,=,由,所以=,于是由双曲线定义,得4-=,5-=,两式相加得-=,所以,所以,又+=,所以+,.三、解答题: 本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)设是锐角三角形,、分别是内角、所对边长,并且.()求角的值;()若的面积等于,求、(其中).解:(),即, .又是锐角三角形,从而. 5分 ()由()及已知,得的面积

7、=,. 由余弦定理知,将及代入,得由、可得.因此是一元二次方程的两个根,解此方程并由知,. 10分PCABDM18. (本小题满分12分) 如图,四棱锥中,底面是的菱形,侧面是边长为2的正三角形,且与底面垂直,为的中点.()求证:平面;()求二面角的余弦值.()证明:取的中点,的中点,连接,.在菱形中,由于,为正三角形,则,又,故平面,从而.又,则四边形为平行四边形,所以.在中,故,所以平面.6分 ()由()知,由题意知,又为的中点,面,则为二面角的平面角.在中,易得,又,从而,故所求二面角的余弦值为. 12分 19. (本小题满分12分)某中学开设有A、B、C等三门选修课程,设每位申请的学生

8、只申请其中一门课程,且申请其中任一门课程是等可能的,求该校的任4位申请的学生中:()恰有2位学生申请A课程的概率;()学生申请的课程门类数的数学期望.解 ()所有可能的申请方式有种,恰有2位学生申请A课程的申请方式有种,从而恰有2位学生申请A课程的概率为. 4分()依题意知所有可能值为1,2,3,得,.综上知,有分布列123P从而有=. 12分20. (本小题满分12分)已知等差数列的各项均为正数,前项和为,数列为等比数列,且,.(1) 求与;(2) 记数列的前项和为,且=,求使成立的所有正整数.解(1)设等差数列的公差为,等比数列的公比为,则由题意可列方程组2分把,代入上式解得或等差数列的各

9、项均为正数,舍去,5分(2)由(1)可得 则+ =(+ =(+=9分=,即=,解得12分21. (本小题满分12分) 已知是椭圆:的右焦点,过点且斜率为()的直线与椭圆交于、两点,是关于轴的对称点.()证明:点在直线上;()设,求外接圆的方程.解:()设直线:, , , , ,由 ,得.又,则,所以,.而=,所以=,与共线且有公共点,、三点共线,即点在直线上.6分()因为,所以=.又,解得,满足.代入,知是方程的两根,根据对称性不妨设,即,.由,关于轴的对称,知外接圆圆心一定在轴上,设外接圆的方程为,把代入方程得,即外接圆的方程为. 12分22. (本小题满分12分)已知函数=.()求函数的单

10、调区间;()若恒成立,试确定实数的取值范围;()证明:()()解:函数的定义域为, .当时,则在上是增函数;当时,若,则;若,则.所以在上是增函数,在上是减函数. 4分()解:由()知时,则在上是增函数,而,不成立,故.当时,由()知的最大值为,要使恒成立,则需=,解得. 8分()证明:由()知,当时有在恒成立,且在上是减函数,所以在上恒成立.令,则,即,从而.所以=.(证毕) 12分高三强化训练(二)数学(文)试题一.选择题(每小题5分,共60分)1.复数满足,则复数的实部与虚部之差为 ( )A.0 B.1 C.3 D.32. 观察下列各式:51=5,52=25,53=125,54=625,

11、=3125,=15625,=78125,则的末四位数字为 ( )A3125 B5625 C0625 D81253.数列an是等差数列,其前n项和为Sn,若平面上的三个不共线的向量满足且A、B、C三点共线,则S2012=( )A1006B1010C2006D20104.不等式且对任意都成立,则的取值范围为 ( )A B C D 5.已知向量,若,则等于( )A. B. C. D. 6. 在区间上任取两个实数,则函数在区间上有且只有一个零点的概率是 ( )A. B. C. D.7. 等比数列中,=4,函数,则 ( )A B. C. D. 8.下图a是某市参加2012年高考的学生身高条形统计图,从左

12、到右的各条形表示的学生人数依次记为A1、A2、Am 如A2表示身高(单位:cm)在150,155内的学生人数。图b是统计图a中身高在一定范围内学生人数的一个算法流程图。现要统计身高在160180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 ( )A9 B8 C7 D69.定义:数列,满足d为常数,我们称为等差比数列,已知在等差比数列中,则的个位数 ( ) A,3 B,4 C,6 D,810. 已知抛物线与双曲线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的离心率为 ( )A B C D11. 的图像关于对称,且当时,(其中是的导函数),若,则

13、的大小关系是 ( )A. B. C. D. 12.在直角坐标平面上的点集,那么的面积是 ( )A B C D二.填空题(每小题5分,共20分)13. 在ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,则 。14.已知某个几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_cm3。15.已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为 _。16. 已知函数的对称中心为M,记函数的导函数为, 的导函数为,则有。若函数,则可求得: .三、解答题,本大题共5小题,满分60分. 解答须写出文字说明,证明过程或演算步骤. 17.(本

14、小题满分12分) 设的内角所对的边长分别为,且(1)求的值;(2)求的最大值。PABCDE18. (本小题满分12分)如图,四棱锥PABCD的底面ABCD是直角梯形,DABABC90o,PA底面ABCD,PAABAD2,BC1,E为PD的中点(1) 求证:CE平面PAB;(2) 求PA与平面ACE所成角的正弦值;19.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所

15、示:支持保留不支持20岁以下80045020020岁以上(含20岁)100150300()在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;()在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率20.(本小题满分12分)设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围。21.(本小题满分12分)已知函数f(x)=ex-1-x(1)求y=f(x)在点(1,f(1)处的

16、切线方程;(2)当x时,f(x)恒成立,求的取值范围。请从第(22)、(23)、(24)三题中任选一题做答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。22、(本小题满分10分)选修4-1:几何证明选讲 如图,是内接于O,直线切O于点,弦,与相交于点(1) 求证:;(2)若,求。23(本小题满分10分)选修44:坐标系与参数方程 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。(1) 写出直线的参数方程和圆的极坐标方程;(2)

17、试判定直线和圆的位置关系。24. (本小题满分10分)选修45:不等式选讲已知函数。(1)若不等式的解集为,求实数的值;(2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。参考答案一.选择题1.A 2.D 3.A 4. B 5. B 6. D 7. C 8 .B 9.C 10. B 11.C 12.C二.填空题13. ,14. , 15. ,16.-8046 三、解答题17.解析:(1)在中,由正弦定理及可得即,则(2)由得18题图当且仅当时,等号成立,故当时,的最大值为.18.解(1). 证明:取PA的中点F,连结FE、FB,则FEBC,且FEADBC,BCEF是平行四边形,CEB

18、F,而BF平面PAB,CE平面PAB(2) 解:取 AD的中点G,连结EG,则EGAP,问题转为求EG与平面ACE所成角的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则GEH为直线EG与平面ACE所成的角现用等体积法来求GH VEAGCSAGCEG,又AE,ACCE,易求得SAEC,VGAEC GHVEAGC,GH在RtEHG中,sinGEH,即PA与平面ACE所成的角正弦值为 19.解:(2)设所选取的人中,有人20岁以下,则,解得.6分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A1,A2;B1,B2,B3,则从中任取2人的所有基本事件为 (A1,B1),(A1

19、, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2),(B1 ,B2),(B2 ,B3),(B1 ,B3)共10个. 8分其中至少有1人20岁以下的基本事件有7个:(A1, B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2), 10分所以从中任意抽取2人,至少有1人20岁以下的概率为. 12分20. 解:(1)解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)(2)显然直线不满足题设条件,可设

20、直线,联立,消去,整理得:由得:或又,又,即 故由、得或21.解(1)在处的切线方程为即 2分 (2)由已知得时,恒成立,设 由先证知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. 由可得从而当时,故当时,为减函数,又于是当时,即故不符合题意.综上可得的取值范围为 。12分选做题答案:22解:(1)在ABE和ACD中, ABE=ACD 2分又BAE=EDC BD/MN EDC=DCN直线是圆的切线,DCN=CAD BAE=CAD(角、边、角) 5分(2)EBC=BCM BCM=BDCEBC=BDC=BAC BC=CD=4又BEC=BAC+ABE=EBC+ABE=ABC=ACB BC=BE=4 8分设AE=,易证 ABEDEC 又 .10分23.解:(1)直线的参数方程是,(为参数)圆的极坐标方程是。 .5分(2)圆心的直角坐标是,直线的普通方程是,圆心到直线的距离,所以直线和圆相离。10分24.解:(1)由(2)由(1)知 21

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(高三数学下学期5月月考试题 理 新人教A版.doc)为本站会员(宝宝乐园)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|