2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc

上传人(卖家):知识图书馆 文档编号:8103740 上传时间:2024-11-29 格式:DOC 页数:20 大小:1.66MB
下载 相关 举报
2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc_第1页
第1页 / 共20页
2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc_第2页
第2页 / 共20页
2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc_第3页
第3页 / 共20页
2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc_第4页
第4页 / 共20页
2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数,是虚数单位,则下列结论正确的是AB的共轭复数为C的实部与虚部之和为1D在复平面内的对应点位于第一象限2若实数满足的约束条件,则的取值范围是( )ABCD3若平面向量,满足,则

2、的最大值为( )ABCD4在中,内角的平分线交边于点,则的面积是( )ABCD5已知抛物线:,点为上一点,过点作轴于点,又知点,则的最小值为( )ABC3D56已知函数,若不等式对任意的恒成立,则实数k的取值范围是( )ABCD7已知集合,则中元素的个数为( )A3B2C1D08已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为( )ABCD9已知抛物线经过点,焦点为,则直线的斜率为( )ABCD10已知函数()的最小值为0,则( )ABCD11我国南北朝时的数学著作张邱建算经有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,

3、下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A多1斤B少1斤C多斤D少斤12若,点C在AB上,且,设,则的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,点在单位圆上,设,且若,则的值为_.14如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则ABC面积的最大值为_15若函数,则使得不等式成立的的取值范围为_.16已知实数满足(为虚数单位),则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演

4、算步骤。17(12分)在平面直角坐标系xOy中,曲线l的参数方程为(为参数),以原点O为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为r=4sinq.(1)求曲线C的普通方程;(2)求曲线l和曲线C的公共点的极坐标.18(12分)在平面直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求直线与曲线的普通方程,并求出直线的倾斜角;(2)记直线与轴的交点为是曲线上的动点,求点的最大距离.19(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐

5、标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.20(12分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求21(12分)如图,四棱锥中,平面平面,若,四边形是平行四边形,且.()求证:;()若点在线段上,且平面,求二面角的余弦值.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,

6、求的值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用复数的四则运算,求得,在根据复数的模,复数与共轭复数的概念等即可得到结论【详解】由题意,则,的共轭复数为,复数的实部与虚部之和为,在复平面内对应点位于第一象限,故选D【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为2、B【解析】根据所给不等式组,画出不等式表示

7、的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.3、C【解析】可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.4、B【解析】利

8、用正弦定理求出,可得出,然后利用余弦定理求出,进而求出,然后利用三角形的面积公式可计算出的面积.【详解】为的角平分线,则.,则,在中,由正弦定理得,即,在中,由正弦定理得,即,得,解得,由余弦定理得,因此,的面积为.故选:B.【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.5、C【解析】由,再运用三点共线时和最小,即可求解.【详解】.故选:C【点睛】本题考查抛物线的定义,合理转化是本题的关键,注意抛物线的性质的灵活运用,属于中档题6、A【解析】先求出函数在处的切线方程,在同一直角坐标系内画出函数和的图象,利用数形结合进行求解即可.【详

9、解】当时,所以函数在处的切线方程为:,令,它与横轴的交点坐标为.在同一直角坐标系内画出函数和的图象如下图的所示:利用数形结合思想可知:不等式对任意的恒成立,则实数k的取值范围是.故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.7、C【解析】集合表示半圆上的点,集合表示直线上的点,联立方程组求得方程组解的个数,即为交集中元素的个数.【详解】由题可知:集合表示半圆上的点,集合表示直线上的点,联立与,可得,整理得,即,当时,不满足题意;故方程组有唯一的解.故.故选:C.【点睛】本题考查集合交集的求解,涉及圆和直线的位置关系的判断,属基础题.8、B【解析】

10、由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:,解得,或(舍去),直线的方程为,设直线与抛物线的另一个交点为,由,解得或,故直线被截得的弦长为故选:B【点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.9、A【解析】先求出,再求焦点坐标,最后求的斜率【详解】解:抛物线经过点,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.10、C【解析】设,计算可得,再结合图像即可求出答案.【详解】设,则,则,由于函数的最小值为0,作出函数的大致

11、图像, 结合图像,得,所以.故选:C【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.11、C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,故选C12、B【解析】利用向量的数量积运算即可算出【详解】解:,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据三角函数定义表示出,由同角三角函数关系式结合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所

12、以由同角三角函数关系式可得,所以 故答案为:.【点睛】本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.14、【解析】先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在BOD中,BD2,易知O的轨迹为阿氏圆,其半径,故故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.15、【解析】分,两种情况代入讨论即可求解.【详解】,当时,符合;当时,不满足.故答案为:【点睛】本题主要考查了分段函数的计算,考查了分类讨论的思想.1

13、6、【解析】由虚数单位的性质结合复数相等的条件列式求得,的值,则答案可求【详解】解:由,所以,得,故答案为:【点睛】本题考查复数代数形式的乘除运算,考查虚数单位的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(2,)【解析】(1)利用极坐标和直角坐标的转化公式求解.(2)先把两个方程均化为普通方程,求解公共点的直角坐标,然后化为极坐标即可.【详解】(1)曲线C的极坐标方程为,则,即.(2),联立可得,(舍)或,公共点(,3),化为极坐标(2,)【点睛】本题主要考查极坐标和直角坐标的转化及交点的求解,熟记极坐标和直角坐标的转化公式是求解的关键,交

14、点问题一般是统一一种坐标形式求解后再进行转化,侧重考查数学运算的核心素养.18、(1),直线的倾斜角为(2)【解析】(1)由公式消去参数得普通方程,由公式可得直角坐标方程后可得倾斜角;(2)求出直线与轴交点,用参数表示点坐标,求出,利用三角函数的性质可得最大值【详解】(1)由,消去得的普通方程是: 由,得,将代入上式,化简得直线的倾斜角为(2)在曲线上任取一点,直线与轴的交点的坐标为则当且仅当时,取最大值.【点睛】本题考查参数方程与普通方程的互化,考查极坐标方程与直角坐标方程的互化,属于基础题求两点间距离的最值时,用参数方程设点的坐标可把问题转化为三角函数问题19、(1);(2)或【解析】(1

15、)消去参数可得圆的直角坐标方程,再根据,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,.,.(2)直线:的极坐标方程为,当时.即:,或.或,直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.20、(1): ;: (2) 【解析】(1)由可得,由,消去参数,可得直线的普通方程为 由可得,将,代入上式,可得,所以曲线的直角坐标方程为(2)由(1)得,的普通方程为,将其化为极坐标方程可得,当时,所以21、()见解析()【解析】()推导

16、出BCCE,从而EC平面ABCD,进而ECBD,再由BDAE,得BD平面AEC,从而BDAC,进而四边形ABCD是菱形,由此能证明AB=AD.()设AC与BD的交点为G,推导出EC/ FG,取BC的中点为O,连结OD,则ODBC,以O为坐标原点,以过点O且与CE平行的直线为x轴,以BC为y轴,OD为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BF-D的余弦值.【详解】()证明:,即,因为平面平面,所以平面,所以,因为,所以平面,所以,因为四边形是平行四边形,所以四边形是菱形,故;解法一:()设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,取的中点为,连接,则,

17、因为平面平面,所以面,以为坐标原点,以过点且与平行的直线为轴,以所在直线为轴,以所在直线为轴建立空间直角坐标系.不妨设,则,设平面的法向量,则,取,同理可得平面的法向量,设平面与平面的夹角为,因为,所以二面角的余弦值为.解法二:()设与的交点为,因为平面,平面平面于,所以,因为是中点,所以是的中点,因为,所以平面,所以,取中点,连接、,因为,所以,故平面,所以,即是二面角的平面角,不妨设,因为,在中,所以,所以二面角的余弦值为.【点睛】本题考查求空间角中的二面角的余弦值,还考查由空间中线面关系进而证明线线相等,属于中档题.22、(1)的普通方程为,的直角坐标方程为;(2).【解析】(1)在曲线的参数方程中消去参数可得出曲线的普通方程,利用两角和的正弦公式以及可将直线的极坐标方程化为普通方程;(2)设直线的参数方程为(为参数),并设点、所对应的参数分别为、,利用韦达定理可求得的值.【详解】(1)由,得,曲线的普通方程为,由,得,直线的直角坐标方程为;(2)设直线的参数方程为(为参数),代入,得,则,设、两点对应参数分别为、,.【点睛】本题考查了参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线参数方程几何意义的应用,考查计算能力,属于中等题.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(2022-2023学年云南省保山市一中高三适应性调研考试数学试题含解析.doc)为本站会员(知识图书馆)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|