1、【精选三年经典试题(数学)】高三全程必备高频题型全掌握系列21.数学方法:数形结合1.(2012潍坊模拟)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P(x,y)若初始位置为P0,当秒针从P0(注:此时t0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为()AysinBysinCysin Dysin选C由题意可得,函数的初相位是,排除B、D.又函数周期是60(秒)且秒针按顺时针旋转,即T60,所以|,即.2.(2012全国)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AEBF.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于
2、入射角当点P第一次碰到E时,P与正方形的边碰撞的次数为()A16 B14 C12 D10解析当E、F分别为AB、BC中点时,显然碰撞的结果为4,当E、F分别为AB的三等分点时,可得结果为6(如图1所示)可以猜想本题碰撞的结果应为2714(如图2所示)故选B.答案B3.(2012西安质检)设a是方程log2x0的实数根,则有 ()Aa0 B1a2C0a2解析由题意可知,a是函数y与ylog2x交点的横坐标,作出图象即可得1a2.答案B4.(2012杭州高中月考)函数y(0a1)的图象的大致形状是 ()解析f(x)又0a1,故选D.答案D5.(2013龙岩质检)若偶函数f(x)满足f(x1)f(x
3、1),且在x0,1时,f(x)x2,则关于x的方程f(x)x在上根的个数是 ()A1 B2 C3 D4解析由题意知f(x)是周期为2的偶函数,故当x1,1时,f(x)x2,画出f(x)的图象,结合yx的图象可知,方程f(x)x在x时有3个根,要注意在x时方程无解答案C高三强化训练(二)数学(文)试题一.选择题(每小题5分,共60分)1.复数满足,则复数的实部与虚部之差为 ( )A.0 B.1 C.3 D.32. 观察下列各式:51=5,52=25,53=125,54=625,=3125,=15625,=78125,则的末四位数字为 ( )A3125 B5625 C0625 D81253.数列a
4、n是等差数列,其前n项和为Sn,若平面上的三个不共线的向量满足且A、B、C三点共线,则S2012=( )A1006B1010C2006D20104.不等式且对任意都成立,则的取值范围为 ( )A B C D 5.已知向量,若,则等于( )A. B. C. D. 6. 在区间上任取两个实数,则函数在区间上有且只有一个零点的概率是 ( )A. B. C. D.7. 等比数列中,=4,函数,则 ( )A B. C. D. 8.下图a是某市参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、Am 如A2表示身高(单位:cm)在150,155内的学生人数。图b是统计
5、图a中身高在一定范围内学生人数的一个算法流程图。现要统计身高在160180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是 ( )A9 B8 C7 D69.定义:数列,满足d为常数,我们称为等差比数列,已知在等差比数列中,则的个位数 ( ) A,3 B,4 C,6 D,810. 已知抛物线与双曲线有相同的焦点F,点A是两曲线的交点,且AF轴,则双曲线的离心率为 ( )A B C D11. 的图像关于对称,且当时,(其中是的导函数),若,则的大小关系是 ( )A. B. C. D. 12.在直角坐标平面上的点集,那么的面积是 ( )A B C D二.填空题(
6、每小题5分,共20分)13. 在ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,则 。14.已知某个几何体的三视图如右图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_cm3。15.已知抛物线上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为 _。16. 已知函数的对称中心为M,记函数的导函数为, 的导函数为,则有。若函数,则可求得: .三、解答题,本大题共5小题,满分60分. 解答须写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 设的内角所对的边长分别为,且(1)求的值;(2)求的最大值。PABCDE18. (本小题满分12分)如
7、图,四棱锥PABCD的底面ABCD是直角梯形,DABABC90o,PA底面ABCD,PAABAD2,BC1,E为PD的中点(1) 求证:CE平面PAB;(2) 求PA与平面ACE所成角的正弦值;19.(本小题满分12分)由世界自然基金会发起的“地球1小时”活动,已发展成为最有影响力的环保活动之一,今年的参与人数再创新高.然而也有部分公众对该活动的实际效果与负面影响提出了疑问.对此,某新闻媒体进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:支持保留不支持20岁以下80045020020岁以上(含20岁)100150300()在所有参与调查的人中,用分层抽
8、样的方法抽取个人,已知从“支持”态度的人中抽取了45人,求的值;()在持“不支持”态度的人中,用分层抽样的方法抽取5人看成一个总体,从这5人中任意选取2人,求至少有人20岁以下的概率20.(本小题满分12分)设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围。21.(本小题满分12分)已知函数f(x)=ex-1-x(1)求y=f(x)在点(1,f(1)处的切线方程;(2)当x时,f(x)恒成立,求的取值范围。请从第(22)、(23)、(24)三题中任选一题做答,并用2B铅笔
9、将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分。22、(本小题满分10分)选修4-1:几何证明选讲 如图,是内接于O,直线切O于点,弦,与相交于点(1) 求证:;(2)若,求。23(本小题满分10分)选修44:坐标系与参数方程 以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。(1) 写出直线的参数方程和圆的极坐标方程;(2)试判定直线和圆的位置关系。24. (本小题满分10分)选修45:不等式选讲已知函数。(1)若不等式的解集为,求实数的值;
10、(2)在(1)的条件下,若存在实数使成立,求实数m的取值范围。参考答案一.选择题1.A 2.D 3.A 4. B 5. B 6. D 7. C 8 .B 9.C 10. B 11.C 12.C二.填空题13. ,14. , 15. ,16.-8046 三、解答题17.解析:(1)在中,由正弦定理及可得即,则(2)由得18题图当且仅当时,等号成立,故当时,的最大值为.18.解(1). 证明:取PA的中点F,连结FE、FB,则FEBC,且FEADBC,BCEF是平行四边形,CEBF,而BF平面PAB,CE平面PAB(2) 解:取 AD的中点G,连结EG,则EGAP,问题转为求EG与平面ACE所成角
11、的大小.又设点G到平面ACE的距离为GH,H为垂足,连结EH,则GEH为直线EG与平面ACE所成的角现用等体积法来求GH VEAGCSAGCEG,又AE,ACCE,易求得SAEC,VGAEC GHVEAGC,GH在RtEHG中,sinGEH,即PA与平面ACE所成的角正弦值为 19.解:(2)设所选取的人中,有人20岁以下,则,解得.6分也就是20岁以下抽取了2人,另一部分抽取了3人,分别记作A1,A2;B1,B2,B3,则从中任取2人的所有基本事件为 (A1,B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2),(B1 ,B2),
12、(B2 ,B3),(B1 ,B3)共10个. 8分其中至少有1人20岁以下的基本事件有7个:(A1, B1),(A1, B2),(A1, B3),(A2 ,B1),(A2 ,B2),(A2 ,B3),(A1, A2), 10分所以从中任意抽取2人,至少有1人20岁以下的概率为. 12分20. 解:(1)解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)(2)显然直线不满足题设条件,可设直线,联立,消去,整理得:由得:或又,又,即 故由、得或21.解(1)在处的切线方程为即 2分 (2)由已知得时,恒成立
13、,设 由先证知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. 由可得从而当时,故当时,为减函数,又于是当时,即故不符合题意.综上可得的取值范围为 。12分选做题答案:22解:(1)在ABE和ACD中, ABE=ACD 2分又BAE=EDC BD/MN EDC=DCN直线是圆的切线,DCN=CAD BAE=CAD(角、边、角) 5分(2)EBC=BCM BCM=BDCEBC=BDC=BAC BC=CD=4又BEC=BAC+ABE=EBC+ABE=ABC=ACB BC=BE=4 8分设AE=,易证 ABEDEC 又 .10分23.解:(1)直线的参数方程是,(为参数)圆的极坐标方程是。 .5分(2)圆心的直角坐标是,直线的普通方程是,圆心到直线的距离,所以直线和圆相离。10分24.解:(1)由(2)由(1)知 - 11 -