1、第第13章章 三角形中的边角关系三角形中的边角关系、命题与证明、命题与证明(总复习总复习)制作人:金勇1三角形的概念三角形的概念三角形有三条边,三个内角,三个顶点三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形内角,简称角相邻两边所组成的角叫做三角形内角,简称角;相邻两边的公共端点是三角形的顶点,相邻两边的公共端点是三角形的顶点,三角形三角形ABC用符号表示为用符号表示为ABC,三角形三角形ABC的边的边AB可用边可用边AB所对的角所对的角C的小写的小写字母字母c 表示,表示,AC可用可用b表示,表示,BC可用可用a
2、表示表示.不在同一直线上的三条线段首尾顺不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形次相接组成的图形叫做三角形1三角形的概念三角形的概念不在同一直线上的三条线段首尾顺次相接组成不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形的图形叫做三角形注意:注意:1:三条线段要不在同一直线上,且首尾顺三条线段要不在同一直线上,且首尾顺次相接;次相接;2:三角形是一个封闭的图形;三角形是一个封闭的图形;3:ABC是三角形是三角形ABC的符号标记,单独的符号标记,单独的的没有意义没有意义2三角形的三边关系注意:注意:1:三边关系的依据是:两点之间线段是短:三边关系的依据是:两点之间线段是短
3、2:判断三条线段能否构成三角形的方法:判断三条线段能否构成三角形的方法:只要满足较小只要满足较小的两条线段之和大于第三条线段,便可构成三角形的两条线段之和大于第三条线段,便可构成三角形;若不满足,则不能构成三角形若不满足,则不能构成三角形.3:三角形第三边的取值范围是三角形第三边的取值范围是:两边之差两边之差第三边第三边3)B.3cm、8cm、10 cm C.三条线段之比为三条线段之比为1:2:3 D.3a、5a、2a+1(a1)CC考点二:三角形三边关系考点二:三角形三边关系例例3ABC的三边长分别为的三边长分别为4、9、x,求求x的取值范围;的取值范围;求求ABC周长的取值范围;周长的取值
4、范围;当当x为偶数时,求为偶数时,求x;当当ABC的周长为偶数时,求的周长为偶数时,求x;若若ABC为等腰三角形,求为等腰三角形,求x考点三:三角形的三线考点三:三角形的三线例例4:下列说法错误的是(:下列说法错误的是()A:三角形的三条中线都在三角形内。三角形的三条中线都在三角形内。B:直角三角形的高线只有一条。直角三角形的高线只有一条。C:三角形的三条角平分线都在三角形内。三角形的三条角平分线都在三角形内。D:钝角三角形内只有一条高线。钝角三角形内只有一条高线。例例5:在三条边都不相等的三角形中,同一条边上的中:在三条边都不相等的三角形中,同一条边上的中 线,高和这边所对角的角平分线,最短
5、的是(线,高和这边所对角的角平分线,最短的是()A:中线。中线。B:高线。高线。C:角平分线。角平分线。D:不能确定。不能确定。BB考点四:三角形内角和定理:考点四:三角形内角和定理:1314解:解:设设B=x,则,则A=3x,C=4x,从而从而:x+3x+4x=180,解得,解得x=22.5 即:即:B=22.5,A=67.5,C=90例例3 ABC中,中,B=A=C,求,求 ABC的三个内角度数的三个内角度数.例例4 如图,点如图,点O是是ABC内一点,内一点,A=80,1=15,2=40,则,则BOC等于(等于()A.95 B.120 C.135 D.650 1 2 图1 B C A O
6、分析与解:分析与解:O=180-(OBC+OCB)=180-(180-(1+2+A)=1+2+A=135考点四:三角形内角和定理:考点四:三角形内角和定理:1.在ABC中,三边长a,b,c都是整数,且满足abc,a=8,那么满足条件的三角形共有多少个?变式:1.已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d千米,则d满足?2.如图,在ABC中,BAC=4ABC=4C,BDAC于点D,求ABD的度数。答案ABD=30变式2.用三条绳子打结成三角形(不考虑结头长),已知其中两条长分别是3米和7米,问这个等腰三角形的周长是多少?3.如图,草原上有四口油井,位于四边形
7、ABCD的四个顶点上,现在要建立一个维修站H,试问H建在何处,才能使它到四口油井的距离之和HA+HB+HC+HD最小,说明理由.4.如图,ACBD,AE平分BAC交BD于点E,若1=64,则2=.5.如图所示的正方形网格中,网格线的交点称为格点已知A、B是两格点,如果C也是图中的格点,且使得ABC为等腰三角形,则点C的个数是()A6 B7 C8 D9 6.已知:如图,ABCD,直线EF分别交AB、CD于点E、F,BEF的平分线与DFE的平分线相交于点P求证:P=908.如图1,求证:BOC=A+B+C如图2,ABC=100,DEF=130,求A+C+D+F的度数7.求证:三角形内角之和等于18010.已知如图所示,在ABC中,DE/BC,F是AB上的一点,FE的延长线交BC的延长线于点G,求证EGHADE.9.如图,已知,直线ABCD,证明:A+C=AEC.