1、第六章第六章6.1.1 6.1.1 算术平方根算术平方根人教版数学七年级下册1.1.了解算术平方根的概念,会用根号表示一了解算术平方根的概念,会用根号表示一个数的算术平方根个数的算术平方根.2.2.了解求一个正数的算术平方根与平方是互了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数逆的运算,会利用这个互逆运算关系求非负数的算术平方根的算术平方根.3.3.了解算术平方根的性质了解算术平方根的性质学习目标学习目标(1)根据图填空:根据图填空:x2=_,y2=_,z2=_,w2=_,(2)x,y,z,w中哪些是有理数中哪些是有理数?哪些是无理数哪些是无理数?你能你能 表示
2、它们吗表示它们吗?2x2+1y2+1z2+1导入新知导入新知1知识点知识点算术平方根的定义算术平方根的定义问题问题1:正数正数3的平方等于的平方等于9,若,若x2=9,则正数则正数x=_.正数正数4的平方等于的平方等于16,若,若x2=16,则正数则正数x=_.说说说说6和和36这两个数又怎样的关系呢?这两个数又怎样的关系呢?问题问题2:(1)0的平方是的平方是_,如果如果x2=0,那么那么x=_.(2)0的算术平方根是的算术平方根是_.合作探究合作探究(2)因为_2,所以的算术平方根是_,a2的算术平方根为a.几个非负数的和等于0时,其中每一个非负数都应的算术平方根也越大;D9的算术平方根是
3、3Aa1 Ba213的算术平方根是9;(2);z2=_,A6 B6x2=_,B因为(6)236,所以6是36的算术平方根若 0,求x2 015y2 016的值a2的算术平方根为a.平方根算术平方根 是一个_数.问题问题3:学校要举行美术作品比赛,小鸥想裁出一块学校要举行美术作品比赛,小鸥想裁出一块 面积为面积为25 dm2的正方形画布,画上自己的得的正方形画布,画上自己的得 意之作参加比赛,这块正方形画布的边长应意之作参加比赛,这块正方形画布的边长应 取多少?取多少?你一定会算出边长应取你一定会算出边长应取5 dm.说说一说,你是怎样算出来的?一说,你是怎样算出来的?因为因为52=25,所以这
4、个正方形画所以这个正方形画布的边长应取布的边长应取5 dm.填表:填表:上面的问题,实际上是已知一个正数的平方,求这个上面的问题,实际上是已知一个正数的平方,求这个正数的问题正数的问题.正方形正方形的的面积面积/dm2191636正方形正方形的的边长边长/dm425定义:定义:一般地,如果一个一般地,如果一个正数正数x的的平方平方等于等于a,即即x2a,那么这个正数,那么这个正数x就叫做就叫做a的算术平方的算术平方根根规定:规定:0的算术平方根是的算术平方根是0.表示方法:表示方法:正数正数a的算术平方根表示为的算术平方根表示为 读作读作“根号根号a”,a下列说法正确的是下列说法正确的是()A
5、3是是9的算术平方根的算术平方根B2是是4的算术平方根的算术平方根C.(2)2的算术平方根是的算术平方根是2 D9的算术平方根是的算术平方根是3例例1 A导引导引:要正确把握算术平方根的定义因为要正确把握算术平方根的定义因为3的平方等的平方等于于9,所以,所以3是是9的算术平方根;因为的算术平方根;因为2不是正不是正数,所以数,所以2不是不是4的算术平方根;因为的算术平方根;因为(2)2 4,而,而224,所以,所以2是是(2)2的算术平方根;的算术平方根;负数没有算术平方根负数没有算术平方根设 a,则下列结论正确的是()14)2的算术平方根是;B2是4的算术平方根D9的算术平方根是3(3)因
6、为2,所以的算术平方布的边长应取5 dm.0,即算术平方根及它的被开方数都x2=_,意之作参加比赛,这块正方形画布的边长应算术平方根 本身是非负数,即100的算术平方根是10,记作 10;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根.术平方根是3,即 3.4的算术平方根是2;即当a_0时,无意义即当a_0时,无意义求 的算术平方根若 0,求x2 015y2 016的值 算术平方根具有双重非负性:这个数是非负数,算术平方根具有双重非负性:这个数是非负数,它的算术平方根也是非负数它的算术平方根也是非负数新知小结新知小结1 【中考中考宜宾宜宾】9的算术平方
7、根为的算术平方根为()A.3 B3 C3 D2 下列说法正确的是下列说法正确的是()A因为因为6236,所以,所以6是是36的算术平方根的算术平方根 B因为因为(6)236,所以,所以6是是36的算术平方根的算术平方根 C因为因为(6)236,所以,所以6和和6都是都是36的算术的算术 平方根平方根 D以上说法都不对以上说法都不对3AA巩固新知巩固新知表示方法:正数a的算术平方根表示为B因为(6)236,所以6是36的算术平方根(2)求一个非负数的算术平方根常借助于平方运算,因即当a_0时,无意义即 _.(1);即 ;(3).问题1:正数3的平方等于9,若x2=9,则正数x=_.(3)因为2,
8、所以的算术平方(2)求一个非负数的算术平方根常借助于平方运算,因意之作参加比赛,这块正方形画布的边长应求 的算术平方根即当a_0时,无意义(2)因为_2,所以的算术平方根是_,B2是4的算术平方根x2=_,定义:一般地,如果一个正数x的平方等于a,2知识点知识点求算术平方根求算术平方根(1)正数的算术平方根是一个正数;正数的算术平方根是一个正数;(2)0的算术平方根是的算术平方根是0;(3)负数负数没有算术平方根;没有算术平方根;(4)被开方数越大,对应的算术平方根也越大被开方数越大,对应的算术平方根也越大合作探究合作探究求下列各数的算术平方根:求下列各数的算术平方根:(1)100;(2);(
9、3)0.0001.例例2 4964解:解:(1)因为因为102=100,所以,所以100的算术平方根是的算术平方根是10,即即(2)因为因为()2=,所以,所以 的算术平方根是的算术平方根是 ,即即 ;(3)因为因为2,所以的算术平方,所以的算术平方 根是,即根是,即 =0.01.10010;7849644964497648 780.0001(1)求一个数的算术平方根时,首先要弄清是求哪个数求一个数的算术平方根时,首先要弄清是求哪个数 的算术平方根,分清求的算术平方根,分清求 与与81的算术平方根的不的算术平方根的不 同意义,不要被表面现象迷惑同意义,不要被表面现象迷惑(2)求一个非负数的算术
10、平方根常借助于平方运算,因求一个非负数的算术平方根常借助于平方运算,因 此熟记常用平方数对求一个数的算术平方根十分有此熟记常用平方数对求一个数的算术平方根十分有 用用81新知小结新知小结1求下列各数的算术平方根:求下列各数的算术平方根:(1)0.0025;(2)81;(3)32.解:解:(1)因为因为20.002 5,所以,所以0.002 5的算术平方的算术平方 根是,即根是,即 ;(2)因为因为9281,所以,所以81的算术平方根是的算术平方根是9,即即 9;(3)因为因为329,9的算术平方根是的算术平方根是3,所以,所以32的算的算 术平方根是术平方根是3,即,即 3.0.0025812
11、3巩固新知巩固新知2求下列求下列各式的值各式的值:(1);(2);(3).解:解:(1)11;19252293(2);252 2(3)242.3【中考中考武汉武汉】计算计算 的结果为()的结果为()A6 B6 C18 D18设设 a,则下列结论正确的是,则下列结论正确的是()Aa441 Ba4412Ca21 Da21441436AD术平方根是3,即 3.即 ;(2)81;上面的问题,实际上是已知一个正数的平方,求这个它的算术平方根也是非负数(3)因为2,所以的算术平方根的定义知它具有“双重”非负性:a0,即当a_0时,无意义被开方数a是非负数,即a 0;即 _.设 a,则下列结论正确的是()(
12、1);了解算术平方根的概念,会用根号表示一个数的算术平方根.x2=_,C因为(6)236,所以6和6都是36的算术即当a_0时,无意义【中考自贡】若 b24b40,则ab的值等于()0,0,0,5下列说法:下列说法:4的算术平方根是的算术平方根是2;3的算术平方根是的算术平方根是9;是是7的算术平方根;的算术平方根;64的算术平方根是的算术平方根是8.其中错误的有()其中错误的有()A1个个 B2个个 C3个个 D4个个7B6一个自然数的算术平方根为一个自然数的算术平方根为a,则和这个自然,则和这个自然数相邻的下一个自然数是()数相邻的下一个自然数是()Aa1 Ba21C.D.21a 1aB7
13、如图,每个小正方形的边长为如图,每个小正方形的边长为1,把阴影部分,把阴影部分剪下来,再用剪下来的阴影部分拼成一个正剪下来,再用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是()方形,那么新正方形的边长是()A.B2C.D.356C3知识点知识点算术平方根的非负性算术平方根的非负性问题问题1:(1)因为因为_2=64,所以,所以64的算术平方根是的算术平方根是 _,即,即 _.(2)因为因为_2,所以的算术平方根是,所以的算术平方根是_,即即 _.(3)因为因为_2=0,所以,所以0的算术平方根是的算术平方根是_,即即 _.88800640.2500问题问题2:讨论:在讨论:在 中,被开
14、方数中,被开方数a是一个是一个_数,数,算术平方根算术平方根 是一个是一个_数数.aa非负非负非负非负合作探究合作探究所以算术平方根所以算术平方根 具有双重非负性:具有双重非负性:1.被开方数被开方数a是非负数,即是非负数,即a 0;2.算术平方根算术平方根 本身是非负数,即本身是非负数,即aa0.a 新知小结新知小结若若 0,求,求x2 015y2 016的值的值例例3 11xy导引导引:非负数与非负数的和为非负数与非负数的和为0当且仅当这两个非负数当且仅当这两个非负数为为0时成立,可列方程求出时成立,可列方程求出x,y的值,从而求出的值,从而求出代数式的值代数式的值 0,0,0,x10,y
15、10,x1,y1.x2 015y2 01612 015(1)2 0162.1x 1y 11xy解:解:合作探究合作探究 算术平方根和绝对值一样,都是非负数,当算术平方根和绝对值一样,都是非负数,当几个非负数的和等于几个非负数的和等于0时,其中每一个非负数都时,其中每一个非负数都为为0.新知小结新知小结(1)中,被开方数中,被开方数a是是_,即,即a_0;(2)是是_,即,即 _0,即非负数的,即非负数的 算术平方根是算术平方根是_;负数没有算术平方根,;负数没有算术平方根,即当即当a_0时,时,无意义无意义aaaa1非负数非负数非负数非负数非负数非负数巩固新知巩固新知2下列说法中不正确的有()
16、下列说法中不正确的有()一个数的算术平方根一定是正数;一个数的算术平方根一定是正数;100的算术平方根是的算术平方根是10,记作,记作 10;(3.14)2的算术平方根是的算术平方根是;a2的算术平方根为的算术平方根为a.A1个个 B2个个 C3个个 D4个个100B3【中考中考自贡自贡】若若 b24b40,则,则ab的值等于()的值等于()A2 B0 C1 D21aD4【中考中考济宁济宁】若若 1有意有意义,则义,则x满足的条件是()满足的条件是()Ax BxCx Dx21x12x12121212C1.表示的是表示的是a的算术平方根,由算术平方的算术平方根,由算术平方 根的定义知它具有根的定
17、义知它具有“双重双重”非负性:非负性:a0,0,即,即算术平方根及它的被开方数都算术平方根及它的被开方数都 为非负数为非负数2.对于所有的算术平方根,被开方数越大,对对于所有的算术平方根,被开方数越大,对 应的算术平方根也越大;反之亦然应的算术平方根也越大;反之亦然aa1知识小结知识小结归纳新知归纳新知求求 的算术平方根的算术平方根2易错小结易错小结18解:解:因为因为 9,3,所以的算术平方根是所以的算术平方根是3.189易错点:易错点:误将求误将求 的算术平方根求成的算术平方根求成a的算术平方根造的算术平方根造 成错误成错误.注意本题是求注意本题是求 的算术平方根,而不是求的算术平方根,而
18、不是求81的算术平方根的算术平方根18a算术平方根算术平方根根号根号a被开方数被开方数0课后练习课后练习CBA平方平方正数和正数和0负数负数0和和13BBCB3BA为0时成立,可列方程求出x,y的值,从而求出x2=_,(1);算术平方根 是一个_数.(3)负数没有算术平方根;C3个 D4个x2=_,a2的算术平方根为a.C1 D2它的算术平方根也是非负数问题2:(1)0的平方是_,如果x2=0,那么x=_.x2=_,因为52=25,所以这个正方形画意之作参加比赛,这块正方形画布的边长应表示的是a的算术平方根,由算术平方A1个 B2个算术平方根和绝对值一样,都是非负数,当(2)因为()2=,所以 的算术平方根是 ,4160a3512a4的算术平方根是2;即 ;求 的算术平方根4,而224,所以2是(2)2的算术平方根;术平方根是3,即 3.1 【中考宜宾】9的算术平方根为()C因为(6)236,所以6和6都是36的算术(3)因为2,所以的算术平方根的定义知它具有“双重”非负性:a0,了解算术平方根的概念,会用根号表示一个数的算术平方根.(2)因为_2,所以的算术平方根是_,【中考自贡】若 b24b40,则ab的值等于()应的算术平方根也越大;4的算术平方根是2;几个非负数的和等于0时,其中每一个非负数都y2=_,应的算术平方根也越大;算术平方根 是一个_数.|a|再见再见