几何概型第二课时课件.ppt

上传人(卖家):晟晟文业 文档编号:5013083 上传时间:2023-02-02 格式:PPT 页数:33 大小:1.17MB
下载 相关 举报
几何概型第二课时课件.ppt_第1页
第1页 / 共33页
几何概型第二课时课件.ppt_第2页
第2页 / 共33页
几何概型第二课时课件.ppt_第3页
第3页 / 共33页
几何概型第二课时课件.ppt_第4页
第4页 / 共33页
几何概型第二课时课件.ppt_第5页
第5页 / 共33页
点击查看更多>>
资源描述

1、 1 1几何概型的定义:几何概型的定义:如果每个事件发生的概率只与构成如果每个事件发生的概率只与构成该事件区域的该事件区域的 成比例,则称这样的概率模成比例,则称这样的概率模型为几何概率模型,简称几何概型型为几何概率模型,简称几何概型 2 2几何概型的特点几何概型的特点 (1)(1)试验中所有可能出现的结果试验中所有可能出现的结果(基本事件基本事件)有有 (2)(2)每个基本事件出现的可能性每个基本事件出现的可能性 长度长度(面积或体积面积或体积)无限多个无限多个相等相等知识回顾 3几何概型概率公式几何概型概率公式 在几何概型中,事件在几何概型中,事件A的概率的计算公式为:的概率的计算公式为:

2、P(A).古典概型古典概型几何概型几何概型所有的基本事所有的基本事件件每个基本事件每个基本事件的发生的发生每个基本事件每个基本事件的发生的概率的发生的概率概率的计算概率的计算的测度的测度Dd)(APnm4几何概型与古典概型的区别几何概型与古典概型的区别有限个有限个无限个无限个等可能等可能1/n0等可能等可能P(A)=例例3.3.假设你家订了一份报纸假设你家订了一份报纸,送报人可能在早送报人可能在早上上6:307:306:307:30之间把报纸送到你家之间把报纸送到你家,你父亲你父亲离开家去工作的时间在早上离开家去工作的时间在早上7:008:007:008:00之间之间,问你父亲在离开家前能得到

3、报纸问你父亲在离开家前能得到报纸(称为事件称为事件A)A)的概率是多少的概率是多少?6.57.57:008:00报纸送到时间父亲离家时间y=x解解:设送报人到达的时间为设送报人到达的时间为x,父亲离开家的时间为时间,父亲离开家的时间为时间y。(x,y)可以看成平面上的点,实验的全部结果构成的区域可以看成平面上的点,实验的全部结果构成的区域为为 ,这是一个正方形区域,面积为这是一个正方形区域,面积为 ,事件,事件A表示父亲在离开家能得到报纸,所构成的区域为表示父亲在离开家能得到报纸,所构成的区域为即图中的阴影部分,面积为即图中的阴影部分,面积为这是一个几何概型,所以这是一个几何概型,所以111s

4、87,5.75.6|),(yxyx87,5.75.6,|),(yxxyyxA.872121211AS7()8ASP AS7:008:00报纸送到时间父亲离家时间y=x6.57.5 1.本事件包含了两个变量,所以所有事件包含的本事件包含了两个变量,所以所有事件包含的区域是平面内正方形区域。区域是平面内正方形区域。2.A事件包含的区域是难点,怎么表示出事件包含的区域是难点,怎么表示出A事件?事件?怎么画出区域?先画边界,再画区域,注意怎么画出区域?先画边界,再画区域,注意A事事件所在区域在所有事件区域之内件所在区域在所有事件区域之内.3.求求A事件所在区域的面积,先求出边界之间的交事件所在区域的面

5、积,先求出边界之间的交点,再求面积;直接求不好求时,可用间接法。点,再求面积;直接求不好求时,可用间接法。注意:注意:9 9、甲、乙两艘轮船都要在某个泊位停靠、甲、乙两艘轮船都要在某个泊位停靠6 6小时,假设小时,假设它们在一昼夜的时间段内随机到达,求至少有一艘轮它们在一昼夜的时间段内随机到达,求至少有一艘轮船需要等待的概率。船需要等待的概率。解:记解:记 分别表示两艘轮船到达的时刻,则有分别表示两艘轮船到达的时刻,则有 ,x y0,24.x y“至少有一艘轮船需要等待至少有一艘轮船需要等待”即即 6.xy如图,利用几何概率可求得如图,利用几何概率可求得 0 624221871.2416p x

6、y18186|06060yxyxyxxy或或或或P142 B组组 1、甲、乙两艘轮船都要在某个泊位停靠、甲、乙两艘轮船都要在某个泊位停靠6小时,小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠泊位时必须等待的概率。中至少有一艘在停靠泊位时必须等待的概率。解:解:设甲到达的时间为设甲到达的时间为x,乙到达的时间为,乙到达的时间为y,则:,则:24,0yx若至少一艘船在停靠泊位时若至少一艘船在停靠泊位时必须等待,则:必须等待,则:60 xy60yx或或6 xy6 yx必须等待的概率为:必须等待的概率为:1671691241

7、8122对对或或或或错错或或错错或或错错或或或或且且且且对对但但是是不不好好理理解解对对,学学生生想想到到的的方方法法,且且对对错错错错060606x-y 06y-x06x-y 06y-x00y-x6x-y 06y-x06666666|6624,024,024,0yxxyyxxyyxxyyxyxyxyxxyyxyxyx主法:容易理解,画图复杂主法:容易理解,画图复杂次法:容易理解,为后续题目准备,但画图复杂次法:容易理解,为后续题目准备,但画图复杂不容易理解,但容易画图不容易理解,但容易画图 xyx+6或或yxx?yx?不考虑先后,只看时间差:-6x-y6练习练习.甲、乙两艘轮船驶向一个不能同

8、时停泊两艘轮船甲、乙两艘轮船驶向一个不能同时停泊两艘轮船 的码头的码头,它们在一昼夜内任何时刻到达是等可能的它们在一昼夜内任何时刻到达是等可能的.(1)(1)如果甲船和乙船的停泊时间都是如果甲船和乙船的停泊时间都是4 4小时小时,求它们中求它们中 的任何一条船不需要等待码头空出的概率;的任何一条船不需要等待码头空出的概率;(2)(2)如果甲船的停泊时间为如果甲船的停泊时间为4 4小时小时,乙船的停泊时间为乙船的停泊时间为 2 2小时小时,求它们中的任何一条船不需要等待码头空出求它们中的任何一条船不需要等待码头空出 的概率的概率.解解 (1)(1)设甲、乙两船到达时间分别为设甲、乙两船到达时间分

9、别为x x、y y,则则00 x x24,024,0y y2424且且y y-x x44或或y y-x x-4.-4.作出区域作出区域设设“两船无需等待码头空出两船无需等待码头空出”为事件为事件A A,44,240,240 xyxyyx或或.362524242020212)(AP则(2)(2)当甲船的停泊时间为当甲船的停泊时间为4 4小时,小时,乙船的停泊时间为乙船的停泊时间为2 2小时小时,两船不两船不需等待码头空出需等待码头空出,则满足则满足x x-y y22或或y y-x x4,4,设在上述条件时设在上述条件时“两船不需等待两船不需等待码头空出码头空出”为事件为事件B B,画出区域画出区

10、域.2882215764422424222221202021)(.24,240,240BPyxxyyx或或 返回返回 变式练习:变式练习:(3)如果甲船的停泊时间为如果甲船的停泊时间为4小时小时,乙船的停泊时间为乙船的停泊时间为 2小时小时,求它们中的至少一条船必须等待码头空出求它们中的至少一条船必须等待码头空出 的概率的概率.(3)(3)当甲船的停泊时间为当甲船的停泊时间为4 4小时,小时,乙船的停泊时间为乙船的停泊时间为2 2小时小时,两船需要等待码头空出两船需要等待码头空出,则满足则满足00 x x-y y2 2或或00y y-x x4,4,或或x-yx-y=0=0设在上述条件时设在上述

11、条件时“两船不需等待码头空出两船不需等待码头空出”为事件为事件B B,画出区域画出区域.288675764425762424)222221202021(2424)(.2040,240,240BPyxxyyx或或不考虑先后,只看时间差:不考虑先后,只看时间差:-4x-y2作业:作业:P142,B,1225200 30 2.,xxaxbab 例例 设设关关于于 的的一一元元二二次次方方程程 若若 是是从从区区间间中中任任取取一一个个数数是是从从区区间间 中中任任取取一一个个数数,求求上上述述方方程程有有实实根根的的概概率率.220,020.abxaxbab当当时时,方方程程有有实实根根当当且且仅仅

12、当当 ()|03 02abab ,试验的全部结果所构成的区域为试验的全部结果所构成的区域为 A222:0.Axaxb 设设事事件件 为为 方方程程有有实实根根解解构成事件构成事件A的区域为的区域为 ()|03 02ababab,所以所求的概率所以所求的概率 2132222().323P A 练习练习:5:5(会面问题会面问题)甲、乙二人约定在甲、乙二人约定在0 0点到点到 5 5 点之间在点之间在某地会面,先到者等一个小时后即离去某地会面,先到者等一个小时后即离去,设二人在这段时设二人在这段时间内的各时刻到达是等可能的,且二人互不影响。求二人间内的各时刻到达是等可能的,且二人互不影响。求二人能

13、会面的概率。能会面的概率。解:解:以以 X,YX,Y 分别表示甲分别表示甲、乙二人到达的时刻,乙二人到达的时刻,于是于是.50,50YX 即即 点点 M M 落在图中的阴影部落在图中的阴影部分分.所有的点构成一个正所有的点构成一个正方形,即有方形,即有无穷多个结果无穷多个结果.由于每人在任一时刻到达由于每人在任一时刻到达都是等可能的,所以落在正都是等可能的,所以落在正方形内各点是方形内各点是等可能的等可能的.M(X,Y)y543210 1 2 3 4 5 x二人会面的条件是:二人会面的条件是:,1|YX2 25 5.9 92 25 54 42 21 12 22 25 5正正方方形形的的面面积积

14、阴阴影影部部分分的的面面积积P P(A A)2 20 1 2 3 4 5yx54321y=x+1y=x-1记记“两人会面两人会面”为事件为事件A例例3、甲乙两艘船驶向一个不能同时停泊两艘轮船的码头、甲乙两艘船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内到达的时间是等可能的它们在一昼夜内到达的时间是等可能的,如果甲船的停泊如果甲船的停泊时间是时间是4小时小时,乙船乙船的停泊时间是的停泊时间是2 2小时小时,求它们中一艘船求它们中一艘船停泊时必须等待一段时间的概率停泊时必须等待一段时间的概率.变式:例变式:例3条件不变条件不变,求它们中的任何一条船都求它们中的任何一条船都不不需要等待码头空出

15、需要等待码头空出的概率的概率.变式:变式:如果两艘船停泊的时间都是如果两艘船停泊的时间都是4 4小时小时,求它们中一求它们中一艘船停泊时必须等待一段时间的概率艘船停泊时必须等待一段时间的概率.221/28867/28811/3611/36 16甲、乙两人街头约会,约定谁先到后须等待甲、乙两人街头约会,约定谁先到后须等待10分钟,这时若另一个人还没有来就可离开如果甲分钟,这时若另一个人还没有来就可离开如果甲1点半到达假设乙在点半到达假设乙在1点到点到2点之间何时到达是等可点之间何时到达是等可能的,则甲、乙能会面的概率为能的,则甲、乙能会面的概率为()A.B.C.D.答案答案B31612141市学

16、案 P91 3.3.1几何概型 16题市学案P93 3.3.2均匀随机数的产生自我测评 14题14.用计算器生成两0,1上的均匀随机数,问这两个随机数的差小于0.5的概率为()市学案P95 单元自主练习二 13题13.从0,1之间选出两个数,这两个数的平方和小于0.25的概率是()16市学案P96 小结与复习 自我测评 2题2.在区间0,1上任取两个数a,b,则方程x2+ax+b2=0有实根的概率为()A.B.C.D.81434121B4.已知已知|x|2,|y|2点点P的坐标为的坐标为(x,y)(1)求当求当x,yR时,时,P满足满足(x2)2(y2)24的概率;的概率;(2)求当求当x,y

17、Z时,时,P满足满足(x2)2(y2)24的概率的概率解:解:(1)(1)如右图,点如右图,点P所在的区域为正方形所在的区域为正方形ABCD的内部的内部(含边界含边界),满足,满足(x2)2(y2)24的的点的区域为以点的区域为以(2,2)为圆心,为圆心,2为半径的圆面为半径的圆面(含边含边界界)(2)满足满足x,y Z,且且 的点的点(x,y)有有25个,满足个,满足x,y Z,且,且(x-2)2+(y-2)24的点的点(x,y)有有6个,所求的概率为个,所求的概率为 2,2xy 2625p 古典概型古典概型几何概型几何概型相同相同区别区别求解方法求解方法基本事件个数基本事件个数的的有限性有

18、限性基本事件发生基本事件发生的等可能性的等可能性基本事件发生基本事件发生的等可能性的等可能性基本事件个数基本事件个数的的无限性无限性课堂小结课堂小结 n几何概型的概率公式几何概型的概率公式.()(AP A 构成事件 的区域长度(面积或体积)试验的全部结果所构成的区域长度 面积或体积)列举法列举法几何测度法几何测度法四、体会概念四、体会概念 举例说明生活中常见的几何概型举例说明生活中常见的几何概型(交通灯问题交通灯问题)一个路口的交通灯,红灯的时间为)一个路口的交通灯,红灯的时间为3030秒,黄灯秒,黄灯的时间为的时间为5 5秒,绿灯的时间为秒,绿灯的时间为4040秒。当你到达路口时,看见下列秒

19、。当你到达路口时,看见下列三种情况的三种情况的 概率各是多少?概率各是多少?(1 1)红灯;)红灯;(2 2)黄灯;)黄灯;(3 3)不是红灯。)不是红灯。例例3.一条直线型街道的一条直线型街道的A、B两盏路灯之间的两盏路灯之间的距离为距离为120米,由于光线较暗,想在中间再随米,由于光线较暗,想在中间再随意安装两盏路灯意安装两盏路灯C、D,顺序为,顺序为A、C、D、B.问问A与与C、B与与D之间的距离都不小于之间的距离都不小于40米的米的概率是多少?概率是多少?解:设A与C、B与D之间的距离分别为x米、y米.则所有可能结果为:记A与C、B与D之间的距离都不小于40米为事件A,则事件A的可能结

20、果为.如图所示,试验全部结果构成区域为直线 与两坐标轴所围成的ABC.而事件A所构成区域是三条直线所夹中间的阴影部分.根据几何概型公式,得到:所以,A与C、B与D之间的距离都不小于40米的概率为.912.将长为将长为l的棒随机折成的棒随机折成3段,求段,求3段长度能段长度能构成三角形的概率构成三角形的概率.解:设解:设A=“3段长度能构成三角形段长度能构成三角形”,x,y 分别表示其中两段的长度,则第分别表示其中两段的长度,则第3段的长段的长度为度为lxy,试验的全部结果可构成集合试验的全部结果可构成集合 =(x,y)|0 xl,0yl,0 x+y ,x ,ylxy (x+y);x+lxyy

21、y ;同理;同理x 。2l2l2l课内练习课内练习 由图可知由图可知,所求概率为所求概率为 P(A)=A的面积 的面积14课内练习课内练习举一反三举一反三4.4.在人群流量较大的街道,有一中年人吆喝在人群流量较大的街道,有一中年人吆喝“送钱送钱”,只见他手拿一黑色小布袋,小布袋只有只见他手拿一黑色小布袋,小布袋只有3 3个黄色、个黄色、3 3个个白色的球(其体积、质地完全相同),旁边立着一块小白色的球(其体积、质地完全相同),旁边立着一块小黑板,写道:黑板,写道:“摸球方法:从小布袋中随机摸出摸球方法:从小布袋中随机摸出3 3个球,个球,若摸得同一颜色的若摸得同一颜色的3 3个球,摊主送给摸球

22、者个球,摊主送给摸球者5 5元钱;若元钱;若摸得非同一颜色的摸得非同一颜色的3 3个球,摸球者付给摊主个球,摸球者付给摊主1 1元钱元钱”.(1 1)摸出的)摸出的3 3个球为白球的概率是多少?个球为白球的概率是多少?(2)(2)摸出的摸出的3 3个球为个球为2 2个黄球个黄球1 1个白球的概率是多少?个白球的概率是多少?(3 3)假定一天中有)假定一天中有100100人次摸奖,试从概率的角度估人次摸奖,试从概率的角度估算一下这个摊主一个月(按算一下这个摊主一个月(按3030天计)能赚多少钱?天计)能赚多少钱?解析:解析:把把3 3个黄球标记为个黄球标记为A A、B B、C C,3 3个白球标

23、记为个白球标记为1 1、2 2、3.3.从从6 6个个球中随机摸出球中随机摸出3 3个的基本事件为:个的基本事件为:ABCABC、AB1AB1、AB2AB2、AB3AB3、AC1AC1、AC2AC2、AC3AC3、A12A12、A13A13、A23A23、BC1BC1、BC2BC2、BC3BC3、B12B12、B13B13、B23B23、C12C12、C13C13、C23C23、123123,共,共2020个个.(1 1)事件)事件E=E=摸出的摸出的3 3个球为白球个球为白球,事件,事件E E包含的基本事件有包含的基本事件有1 1个,个,即摸出即摸出123123号号3 3个球个球P P(E

24、E)=0.05.=0.05.(2 2)事件)事件F=F=摸出的摸出的3 3个球为个球为2 2个黄球个黄球1 1个白球个白球,事件,事件F F包含的基本包含的基本事件有事件有9 9个,个,P P(F F)=0.45.=0.45.(3)(3)事件事件G=G=摸出的摸出的3 3个球为同一颜色个球为同一颜色=摸出的摸出的3 3个球为白球或摸出个球为白球或摸出的的3 3个球为黄球个球为黄球,P P(G G)=0.1.=0.1.假定一天中有假定一天中有100100人次摸奖,人次摸奖,由摸出的由摸出的3 3个球为同一颜色的概率可估计事件个球为同一颜色的概率可估计事件G G发生有发生有1010次次,不发生不发生有有9090次次,则一天可赚则一天可赚90901-101-105=40,5=40,所以每月可赚所以每月可赚1 2001 200元元.120920220

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(几何概型第二课时课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|