1、16.3 16.3 二次根式的加减二次根式的加减 (1)被开方数的因数是)被开方数的因数是 整数,因式是整式。整数,因式是整式。(2)被开方数中不含能开)被开方数中不含能开 得尽方的因数或因式得尽方的因数或因式;分母不含根号。分母不含根号。最简二次根式最简二次根式温故知新温故知新 二次根式计算、化简二次根式计算、化简的结果应符合什么要求?的结果应符合什么要求?504 2与与的形式与实质是什么?的形式与实质是什么?形式上都是二次根式,实质上形式上都是二次根式,实质上不是最简二次根式,可以化简:不是最简二次根式,可以化简:505 25 23 24 2501832和和还可以化简吗?还可以化简吗?二次
2、根式的加减二次根式的加减这个就是我们这个就是我们今天要学习的今天要学习的内容内容是最简二次根式是最简二次根式4 2但但(化简)(化简)(逆用分配律)(逆用分配律)如何计如何计算出这算出这个结果个结果呢?呢?505 2183 2324 2经过化简以经过化简以后有什么共后有什么共同特征?同特征?几个二次根式化几个二次根式化成成最简二次根式最简二次根式后,如果后,如果被开方被开方数相同,数相同,这几个这几个二次根式就叫做二次根式就叫做同类二次根式。同类二次根式。5018325 23 24 2(534)2 12 2(1)(1)如果几个二次根式的被如果几个二次根式的被开方数相同开方数相同,那么可以直接那
3、么可以直接根据分配律进行加减运算;根据分配律进行加减运算;(2)(2)如果所给的二次根式不是如果所给的二次根式不是最简二次根式,应该先化简,最简二次根式,应该先化简,再考虑进行加减运算。再考虑进行加减运算。二次根式加减法的一般思路:二次根式加减法的一般思路:理论应用理论应用实践实践B.二次根式加减法的步骤:(如 与 )不能合并中,哪些是同类二次根式?二次根式加减法的步骤:D.要看几个二次根式是否为形式上都是二次根式,实质上(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算;整式的加减实质是合并同类项二次根式加减法的一般思路:注意:不是同类二次根式的(1)被开方数的因数是(
4、1)被开方数的因数是(1)如果几个二次根式的被开方数相同,那么可以直接根据分配律进行加减运算;(1)被开方数的因数是几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。D.要看几个二次根式是否为要看几个二次根式是否为同类二次根式,先将它们都化为同类二次根式,先将它们都化为最简二次根式,再被开方数是否最简二次根式,再被开方数是否相同。相同。2482127133832abbab26例例 下列各式下列各式,中,哪些是同类二次根式?中,哪些是同类二次根式?,分析:分析:12713 3 3832ab22423bab2223bab62abb62abb2622abbbb48
5、243 2434 3,121222,39,423bab,3 2ab。解:解:221,是同类二次根式,是同类二次根式,482713,是同类二次根式,是同类二次根式,3832ab62abb,是同类二次根式,是同类二次根式,2482127133832abbab26例例 下列各式下列各式,中,哪些是同类二次根式?中,哪些是同类二次根式?,经过分析思考得出:经过分析思考得出:思考:判断同类二次思考:判断同类二次根式与判断同类项有根式与判断同类项有什么区别?什么区别?注意注意:判断几个二次根式是否为同判断几个二次根式是否为同类二次根式类二次根式,只需看化为最简二次根只需看化为最简二次根式后的被开方数是否相
6、同式后的被开方数是否相同,与最简二与最简二次根式前面的因式及符号无关次根式前面的因式及符号无关类比 迁移 感悟例例4:计算计算2 12+3 48-4 75解:解:2 12+3 48-4 75=4 3+12 3-20 3=-4 3例例5:计算:计算:13+13-1解:解:=6-122+12-18+63=63-122 226-2 3-6 3-3 223+13-1=3-11=3-1=2 2226-2 3-6 3-3=6-262 3+2323-6 3+6注意:判断几个二次根式是否为同类二次根式,只需看化为最简二次根式后的被开方数是否相同,与最简二次根式前面的因式及符号无关类比 迁移 感悟B.形式上都是
7、二次根式,实质上(1)被开方数的因数是几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。在下列各组根式中,是同类二次根式的是()二次根式计算、化简的结果应符合什么要求?经过化简以后有什么共同特征?几个二次根式化为最简二次根式以后,被开方数相同。(1)被开方数的因数是开动你的脑筋,你一定行!(如 与 )不能合并几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。这个就是我们今天要学习的内容二次根式加减法的步骤:这个就是我们今天要学习的内容中,哪些是
8、同类二次根式?比较二次根式的加减与整式的加减,你能得出什么结论?(如 与 )不能合并分母不含根号。几个二次根式化为最简二次根式以后,被开方数相同。例例6:计算:计算:解:解:38+50-304538+50-3045=3 2 2+5 2-3045=37 2-653 56=7 6-320 6=31.在下列各组根式中,是同类二次根式的在下列各组根式中,是同类二次根式的是(是()A.B.C.D.122,212,24ab,ab11 a,a12271624321252.与与 是同类二次根式的是是同类二次根式的是()A.B.C.D.D?ACBAC要细心哟!要细心哟!再检查一下再检查一下B注意:不是同类二次根
9、式的同类二次根式的(如如 与与 )不能合并不能合并233.判断判断:下列计算是否正确下列计算是否正确?为什么为什么?;22222;5321 5329421883?2232281 82522正确:正确:483316122.13123234314解:解:532012.2535232533 xxxx1246932.3xxx232x3先化简,先化简,再合并再合并不是同类不是同类二次根式二次根式不能合并不能合并163 483(2)(1220)(35)21(3)96234xxxx计算:(1)2 12比较二次根式的比较二次根式的加减与整式的加加减与整式的加减,你能得出什减,你能得出什么结论?么结论?二次根式
10、的加减实质是二次根式的加减实质是合并同类二次根式合并同类二次根式整式的加减实质是整式的加减实质是合并合并同类项同类项(1)188(2)75271(3)4863小试牛刀小试牛刀(4 4)下列计算正确的是()下列计算正确的是()A.235xxxD.8 3 211 2C.3122aaa B.4 554C完全正确完全正确相信自己相信自己没错没错(3)合并同类二次根式。)合并同类二次根式。一化 二找三合并二次根式加减法的步骤:二次根式加减法的步骤:(1)将每个二次根式化为最简二次根式;)将每个二次根式化为最简二次根式;(2)找出其中的同类二次根式;)找出其中的同类二次根式;交流归纳交流归纳不要写不要写成
11、带分成带分数数?计算计算3241182182(1)6813222124(2)解:解:(1)原式原式34 222234122922(2)原式原式6241632221622412161322243635不是同类二不是同类二次根式不能次根式不能合并合并 一路下来,我们结识了很多新知识,一路下来,我们结识了很多新知识,也有了很多的新想法。也有了很多的新想法。你能谈谈自己的收获吗?说一说,你能谈谈自己的收获吗?说一说,让大家一起来分享。让大家一起来分享。1.什么是同类二次根式?什么是同类二次根式?几个二次根式化为几个二次根式化为最简二次最简二次根式根式以后,以后,被开方数相同。被开方数相同。2.怎样进行二次根式的加减法运算?怎样进行二次根式的加减法运算?一化二找三合并一化二找三合并 讨论总结