人教版九年级24圆课件.ppt

上传人(卖家):晟晟文业 文档编号:5089402 上传时间:2023-02-10 格式:PPT 页数:91 大小:3.35MB
下载 相关 举报
人教版九年级24圆课件.ppt_第1页
第1页 / 共91页
人教版九年级24圆课件.ppt_第2页
第2页 / 共91页
人教版九年级24圆课件.ppt_第3页
第3页 / 共91页
人教版九年级24圆课件.ppt_第4页
第4页 / 共91页
人教版九年级24圆课件.ppt_第5页
第5页 / 共91页
点击查看更多>>
资源描述

1、圆XXX 大学 张XXX本章知识结构图圆的基本性质圆的基本性质圆圆圆的对称性圆的对称性弧、弦圆心角之间的关系弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系与圆有关的位置关系正多边形和圆正多边形和圆有关圆的计算有关圆的计算点和圆的位置关系点和圆的位置关系切线切线直线和圆的位置关系直线和圆的位置关系三角形的外接圆三角形的外接圆三角形内切圆三角形内切圆等分圆等分圆圆和圆的位置关系圆和圆的位置关系弧长弧长扇形的面积扇形的面积圆锥的侧面积和全面积圆锥的侧面积和全面积一一.圆的基本概念圆的基本概念:1.圆的定义圆的定义:到定点的距离等于定长的点的到定点的距

2、离等于定长的点的集合叫做圆集合叫做圆.2.有关概念有关概念:(1)弦、直径弦、直径(圆中最长的弦圆中最长的弦)(2)弧、优弧、劣弧、等弧弧、优弧、劣弧、等弧(3)弦心距弦心距O 经过圆心的弦(如图中的经过圆心的弦(如图中的AB)叫做)叫做直径直径COAB连接圆上任意两点的线段(如图连接圆上任意两点的线段(如图AC)叫做叫做弦弦,与圆有关的概念与圆有关的概念弦弦圆的任意一条直径的两个端点把圆分成两条弧,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做每一条弧都叫做半圆半圆COAB弧弧圆上任意两点间的部分叫做圆上任意两点间的部分叫做圆弧圆弧,简称,简称弧弧以以A、B为端点的弧记作为端点的弧

3、记作 AB,读作,读作“圆弧圆弧AB”或或“弧弧AB”COAB劣弧与优弧劣弧与优弧小于半圆的弧叫做小于半圆的弧叫做劣弧劣弧.大于半圆的弧叫做大于半圆的弧叫做优弧优弧.(如图中的(如图中的AC)(用三个字母表示用三个字母表示,如图中的如图中的ACB)O1rO2r半径相等的两个圆叫做半径相等的两个圆叫做等圆等圆。圆心相同,半径相等的两个圆是同心圆圆心相同,半径相等的两个圆是同心圆;半径相等的两个圆是等圆半径相等的两个圆是等圆.判断题判断题等圆等圆弓形:由弦及其所对的弧组成的图形叫弓形。弓形:由弦及其所对的弧组成的图形叫弓形。等圆:能够重合的两个圆叫做等圆,易知同圆或等圆的等圆:能够重合的两个圆叫做

4、等圆,易知同圆或等圆的半径相等。半径相等。同心圆:圆心相同,半径不相等的两个圆叫做同同心圆:圆心相同,半径不相等的两个圆叫做同心圆心圆等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。等弧应同时满足两个条件:等弧应同时满足两个条件:1)两弧的长度相等,)两弧的长度相等,2)两弧的度数相等。)两弧的度数相等。1、直径是弦,而弦不一定是直径;、直径是弦,而弦不一定是直径;2、半圆是弧,而弧不一定是半圆;、半圆是弧,而弧不一定是半圆;3、两条等弧的度数相等,长度也相等,、两条等弧的度数相等,长度也相等,反之,度数相等或长度相等的两条弧不一定是等弧。反之,

5、度数相等或长度相等的两条弧不一定是等弧。注意:注意:圆心角圆心角:我们把顶点在圆心的角叫做:我们把顶点在圆心的角叫做圆心角圆心角.圆周角圆周角:顶点在圆上顶点在圆上,并且两边都与圆相交的并且两边都与圆相交的角角,叫做叫做圆周角圆周角.OBAOBAC圆心角与圆周角圆心角与圆周角弧、弦与圆心角的关系定理弧、弦与圆心角的关系定理在同圆或等圆中,在同圆或等圆中,相等的圆心角所相等的圆心角所对的弧相等,所对的弦也相等对的弧相等,所对的弦也相等在同圆或等圆中,在同圆或等圆中,如果圆心角、弧、如果圆心角、弧、弦有一组量相等,那么它们所对应弦有一组量相等,那么它们所对应的其余两个量都分别相等。的其余两个量都分

6、别相等。综上所述综上所述,圆周角圆周角ABCABC与圆心角与圆心角AOCAOC的大小关系是的大小关系是:同弧所对的同弧所对的圆周角圆周角等于它所对的等于它所对的圆心角的一圆心角的一半半.OABCOABCOABC即即 ABC=AOC.ABC=AOC.21BOADC同弧同弧 所对的圆周角相等所对的圆周角相等.都等于都等于这条弧所对的圆心角的一这条弧所对的圆心角的一半半.(等弧等弧)思考思考:相等的圆周角所对的弧相等相等的圆周角所对的弧相等吗吗?在同圆或等圆中在同圆或等圆中圆周角定理圆周角定理:ABCD在同圆或等圆中在同圆或等圆中相等的圆周角所对的弧相等相等的圆周角所对的弧相等.则则 D=AABCD

7、如图如图,若若 AC=BD 1.1.如图如图,在在O O中中,BOC=50,BOC=50,求求A A的大小的大小.OBAC解解:A =BOC=25:A =BOC=25.21ABOC如图如图,AB是直径是直径,则则ACB=90 度度半圆(或直径)半圆(或直径)所对的圆周角所对的圆周角是直角,是直角,90度度的圆周角所对的弦的圆周角所对的弦是直径。是直径。如图,设如图,设O O 的半径为的半径为r r,A A点在圆内点在圆内B B点在圆上点在圆上C C点在圆外点在圆外点点A在在 O内内 点点B在在 O上上 点点C在在 O外外 反过来,如果已知点到圆心的距离和圆的半径之反过来,如果已知点到圆心的距离

8、和圆的半径之间的关系,可以判断点和圆的位置关系间的关系,可以判断点和圆的位置关系?OAr OB=r OCrABCrOAr OB=r OCrO设设O O 的半径为的半径为r r,点,点P P到圆心的距离到圆心的距离OP=OP=d d,则有:则有:点点P在圆内在圆内 点点P在圆上在圆上 点点P在圆外在圆外 点与圆的位置关系点与圆的位置关系dr d=r drrpdprd Prd直线与圆有三种位置关系直线与圆有三种位置关系(1)相交:直线与圆有两个公共点时,叫做直线和圆相交。)相交:直线与圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。这时直线叫做圆的割线。(2)相切:直线与圆有唯一个公共点

9、时,叫做直线和圆相切。)相切:直线与圆有唯一个公共点时,叫做直线和圆相切。这时直线叫做圆的切线。这时直线叫做圆的切线。(3)相离:直线与圆没有公共点时,叫做直线和圆相离。)相离:直线与圆没有公共点时,叫做直线和圆相离。相离相离 相切相切 相交相交二二.圆的基本性质圆的基本性质1.圆的对称性圆的对称性:(1)圆是轴对称图形圆是轴对称图形,经过圆心的每一条直经过圆心的每一条直线都是它的对称轴线都是它的对称轴.圆有无数条对称轴圆有无数条对称轴.(2)圆是中心对称图形圆是中心对称图形,并且绕圆心旋转并且绕圆心旋转任何一个角度都能与自身重合任何一个角度都能与自身重合,即圆具即圆具有旋转不变性有旋转不变性

10、.OABCDE垂径定理:垂径定理:垂直于弦的直径平分垂直于弦的直径平分弦,并且平分弦所对的两条弧弦,并且平分弦所对的两条弧平分弦(不是直径)的直径垂直于弦,并且平分弦平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧所对的两条弧CD是圆是圆O的直径的直径,CDABAP=BP,AD=DB AC=BCn你可以写出相应的命题吗你可以写出相应的命题吗?n相信自己是最棒的相信自己是最棒的!垂径定理的推论垂径定理的推论 如图如图,在下列五个条件中在下列五个条件中:只要具备其中两个条件只要具备其中两个条件,就可推出其余三个结论就可推出其余三个结论.OABCDM CD是直径是直径,AM=BM,CDAB,

11、AC=BC,AD=BD.垂径定理及推论垂径定理及推论OABCDM条件结论命题垂直于弦的直径平分弦垂直于弦的直径平分弦,并且平分弦所对的两条弧并且平分弦所对的两条弧.平分弦平分弦(不是直径不是直径)的直径垂直于弦的直径垂直于弦,并且平并且平 分弦所对的两条弧分弦所对的两条弧.平分弦所对的一条弧的直径平分弦所对的一条弧的直径,垂直平分弦垂直平分弦,并且平分弦所对的并且平分弦所对的另一条弧另一条弧.弦的垂直平分线经过圆心弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧并且平分这条弦所对的两条弧.垂直于弦并且平分弦所对的一条弧的直线经过圆心垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平并且平分

12、弦和所对的另一条弧分弦和所对的另一条弧.平分弦并且平分弦所对的一条弧的直线经过圆心平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦垂直于弦,并且平分弦所对的另一条弧并且平分弦所对的另一条弧.平分弦所对的两条弧的直线经过圆心平分弦所对的两条弧的直线经过圆心,并且垂直平分弦并且垂直平分弦.一、判断是非:一、判断是非:(1)平分弦的直径,平分这条弦所对的弧。)平分弦的直径,平分这条弦所对的弧。(2)平分弦的直线,必定过圆心。)平分弦的直线,必定过圆心。(3)一条直线平分弦(这条弦不是直径),)一条直线平分弦(这条弦不是直径),那么这那么这 条直线垂直这条弦。条直线垂直这条弦。ABCDO(1)AB

13、CD O(2)ABCD O(3)(4)弦的垂直平分线一定是圆的直径。弦的垂直平分线一定是圆的直径。(5)平分弧的直线,平分这条弧所对的)平分弧的直线,平分这条弧所对的 弦。弦。(6)弦垂直于直径,这条直径就被弦平分。)弦垂直于直径,这条直径就被弦平分。ABC O(4)ABCD O(5)ABCD O(6)E(7)平分弦的直径垂直于弦)平分弦的直径垂直于弦 3 3、平面上有三点、平面上有三点A、B、C,经过,经过A、B、C三点的圆有几个?圆心在哪里?三点的圆有几个?圆心在哪里?归纳结论归纳结论:不在同一条直线上不在同一条直线上的三个点确定一个圆的三个点确定一个圆。探究与实践探究与实践BC经过经过B

14、,CB,C两点的圆的两点的圆的圆心圆心在线段在线段ABAB的垂直平分线上的垂直平分线上.An经过经过A,B,CA,B,C三点的圆的三点的圆的圆心圆心应该这应该这两条垂直平分线的两条垂直平分线的交点交点O O的位置的位置.O经过经过A,BA,B两点的圆的两点的圆的圆心圆心在线段在线段ABAB的垂直平分线上的垂直平分线上.经过三角形三个顶点可以画一个圆,并且只能画一个一个三角形的外接圆有几个?一个三角形的外接圆有几个?一个圆的内接三角形有几个?一个圆的内接三角形有几个?经过三角形三个顶点的圆叫做三经过三角形三个顶点的圆叫做三角形的角形的外接圆外接圆。三角形的外心就是三角形三角形的外心就是三角形三条

15、边的垂直平分三条边的垂直平分线的交点线的交点,它到三角形三个顶点的距离相等。,它到三角形三个顶点的距离相等。这个三角形叫做这个圆的这个三角形叫做这个圆的内内接三角形接三角形。三角形外接圆的圆心叫做这个三角形外接圆的圆心叫做这个三角形的三角形的外心外心。OABC 有关概念有关概念 分别画一个锐角三角形、直角三角形和钝角三分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系与它的外心的位置关系.做一做做一做锐角三角形的外心位于三角形锐角三角形的外心位于三角形内内,直角三角形的外心位于直角三角形直角三角形

16、的外心位于直角三角形斜边中点斜边中点,钝角三角形的外心位于三角形钝角三角形的外心位于三角形外外.ABCOABCCABOO切线的切线的判定判定定理定理 定理定理 经过半径的外端并且垂直于这条半径的直经过半径的外端并且垂直于这条半径的直线是圆的切线线是圆的切线.老师提示老师提示:切线的判定定理是证明一条直线是否是圆的切线的根切线的判定定理是证明一条直线是否是圆的切线的根据据;作过切点的半径是常用经验辅助线之一作过切点的半径是常用经验辅助线之一.CDBOAn如图如图nOA A是是O的半径的半径,直线直线CDCD经过经过A A点点,且且CDCDOA A,n CD CD是是O的切线的切线.切线切线的性质

17、定理的性质定理 定理定理 圆的切线垂直于过切点的半径圆的切线垂直于过切点的半径.如图如图CDCD是是O的切线的切线,A,A是是切点切点,OA A是是O的半径的半径,CDCDOA.A.n老师提示老师提示:n切线的性质定理是证明两线垂直的重要根据切线的性质定理是证明两线垂直的重要根据;作作过切点的半径是常用经验辅助线之一过切点的半径是常用经验辅助线之一.CDBOA切线切线判定判定定理的应用定理的应用 1.已知已知O上有一点上有一点A,A,你能过点你能过点A A点作出点作出O的切线吗的切线吗?n老师提示老师提示:n根据根据“经过半径的外端经过半径的外端,并且垂直于这条半径的直线是并且垂直于这条半径的

18、直线是圆的切线圆的切线”只要连接只要连接OA,A,过点过点A A作作OA A的垂线即可的垂线即可.O An2.已知已知O外有一点外有一点P,P,你还能过点你还能过点P P点作出点作出O的切线吗的切线吗?O P 经过圆外一点的切线,这点和切点之间的线段的长,叫做这个点到圆的切线长 从圆一点外可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。切线长定理:切线长定理:PAOBPA 从一块三角形材料中从一块三角形材料中,能否剪下一个圆能否剪下一个圆,使其与各边都使其与各边都相切相切?n老师提示老师提示:n假设符合条件的圆已作出假设符合条件的圆已作出,则它的圆心到三边的距离则它

19、的圆心到三边的距离相等相等.因此因此,圆心在这个三角形三个角的平分线上圆心在这个三角形三个角的平分线上,半径半径为圆心到三边的距离为圆心到三边的距离.三角形与三角形与圆圆的位置关系的位置关系ABCABCII三角形与三角形与圆圆的位置关系的位置关系 这圆叫做三角形的这圆叫做三角形的内切圆内切圆.这个这个三角形叫做圆的三角形叫做圆的外切三角形外切三角形.内切圆内切圆的圆心是三角形三的圆心是三角形三条角平分线的交点条角平分线的交点,叫做三叫做三角形的角形的内心内心.ABCI切点切点外离外离:两圆没有公共点两圆没有公共点,并且每个圆上的点都在另并且每个圆上的点都在另一个圆的外部时,叫做一个圆的外部时,

20、叫做两圆外离两圆外离.外切外切:两圆只有一个公共点两圆只有一个公共点,并且除了公共点外并且除了公共点外,每个圆上的点都在另一个圆的外部时每个圆上的点都在另一个圆的外部时,叫叫两圆外切两圆外切.这个公共的点叫做切点这个公共的点叫做切点.切点切点相交相交:两圆有两个公共点时两圆有两个公共点时,叫叫两圆相交两圆相交.内切内切:两圆有一个公共点两圆有一个公共点,并且除了公共点外并且除了公共点外,一一个圆上的点都在另一个圆的内部时个圆上的点都在另一个圆的内部时,叫叫两圆内切两圆内切.这个公共点叫做切点这个公共点叫做切点.内含内含:两圆无公共点两圆无公共点,并且一个圆上的点都并且一个圆上的点都在另一个圆的

21、内部时在另一个圆的内部时,叫叫两圆内含两圆内含.特特 例例 两圆的位置关系 数量关系公共点 外离没有公共点 外切一个公共点 相交二个公共点 内切一个公共点 内含公共点dR+rd=R+rd=R-rdR-rR-rdR+r圆与圆的位置关系圆与圆的位置关系:1)1)两圆的两圆的五种五种位置关系位置关系2)2)用两圆的用两圆的圆心距圆心距d d与两与两圆的圆的半径半径R,rR,r的数量关系的数量关系来判别两圆的位置关系来判别两圆的位置关系解:设解:设P P的半径为的半径为R R(1)若若 O与与 P外切,外切,则则 OP=5+R=8 R=3 cm(2)若若 O与与 P内切,内切,则则 OP=R-5=8,

22、R=13 cm所以所以 P的半径为的半径为3cm或或13cm.PO 1 1 如图如图O O的半径为的半径为5cm5cm,点,点P P是是O O外一点,外一点,OP=8cmOP=8cm。若以若以P P为圆心作为圆心作P P与与O O相切,求相切,求P P的半径?的半径?知识精华知识精华:2.半径:正多边形外接圆的半径:正多边形外接圆的半径叫做这个正多边形的半径叫做这个正多边形的半径半径.中心:一个正多边形外中心:一个正多边形外接圆的圆心叫做这个正多接圆的圆心叫做这个正多边形的中心边形的中心OABFDCEG3.中心角:正多边形每以边中心角:正多边形每以边所对的外接圆的圆心角叫所对的外接圆的圆心角叫

23、做这个正多边形的中心做这个正多边形的中心角角4.边心距:中心到正多边形边心距:中心到正多边形一边的距离叫做这个正多一边的距离叫做这个正多边形的边心距边形的边心距一、知识要点概述一、知识要点概述 1、弧长公式和扇形面积公式、弧长公式和扇形面积公式 n的圆心角所对的弧长的圆心角所对的弧长l和含和含n圆心角的扇形的面圆心角的扇形的面积公式不要死记硬背,可依比例关系很快地随手推来:积公式不要死记硬背,可依比例关系很快地随手推来:222360360180360扇形扇形扇形扇形Slnn=,=,RRnRnl=,S=R 这样就不至于因死记硬背而出错这样就不至于因死记硬背而出错 将弧长公式代入扇形面积公式中,立

24、即得到用弧长将弧长公式代入扇形面积公式中,立即得到用弧长和半径表示的扇形面积公式:和半径表示的扇形面积公式:1=2扇形扇形SlR 这一公式与三角形面积公式酷似为了便于记忆,这一公式与三角形面积公式酷似为了便于记忆,只要把扇形看成一个曲边三角形,把弧长只要把扇形看成一个曲边三角形,把弧长l看成底、看成底、R看看成底边上的高即可成底边上的高即可2、弓形面积、弓形面积 弓形面积可以看作是扇形面积和三角形面积的分解弓形面积可以看作是扇形面积和三角形面积的分解与组合,实际应用时,可根据图形直观选用下列公式:与组合,实际应用时,可根据图形直观选用下列公式:当弓形所含的弧是劣弧时当弓形所含的弧是劣弧时,如图

25、如图(甲甲),S弓形弓形=S扇形扇形OABSAOB;当弓形所含的弧是优弧时,如图当弓形所含的弧是优弧时,如图(乙乙),当弓形所含的弧是半圆时,如图当弓形所含的弧是半圆时,如图(丙丙),1=2弓形弓形圆圆SS3、圆锥的基本特征、圆锥的基本特征如图:如图:圆锥的轴通过底面的圆心,并且垂直于底面;圆锥的轴通过底面的圆心,并且垂直于底面;圆锥的母线长都相等;圆锥的母线长都相等;经过圆锥的轴的平面被圆锥截得的图形是等腰三经过圆锥的轴的平面被圆锥截得的图形是等腰三角形角形 如图,如图,SAB就是一个经过圆锥的轴的截面,简称就是一个经过圆锥的轴的截面,简称为轴截面,它是一个等腰三角形,底边为轴截面,它是一个

26、等腰三角形,底边AB是底面圆的直是底面圆的直径,腰是圆锥的母线,高是圆锥的高,它的顶角叫做锥径,腰是圆锥的母线,高是圆锥的高,它的顶角叫做锥角,锥角的大小反映了圆锥母线对于底面的倾斜程度角,锥角的大小反映了圆锥母线对于底面的倾斜程度4、圆锥的侧面展开图、圆锥的侧面展开图 圆锥的侧面展开图是一个扇形,其半径等于圆锥的圆锥的侧面展开图是一个扇形,其半径等于圆锥的母线长,弧长等于圆锥底面圆周长母线长,弧长等于圆锥底面圆周长 如图,若圆锥的底面半径为如图,若圆锥的底面半径为r,母线长为,母线长为l,则它的,则它的侧面积,侧面积,即即S侧侧=rl,S全全=S侧侧S底底=rlr2=r(lr)1=2=,2侧

27、侧Slrrl注意:注意:扇形的弧长就扇形的弧长就是底面圆的周长,扇形是底面圆的周长,扇形的半径就是母线长的半径就是母线长二、重难点知识归纳二、重难点知识归纳 弧长公式、扇形面积公式、圆锥的侧面积和全面弧长公式、扇形面积公式、圆锥的侧面积和全面积积三、典型例题赏析三、典型例题赏析 例例1、如图,、如图,ABC是正三角形曲线是正三角形曲线CDEF叫叫做正三角形的渐开线,其中做正三角形的渐开线,其中 的圆心依次按的圆心依次按A、B、C循环,它们依次相连结如果循环,它们依次相连结如果AB=1,那么曲线,那么曲线CDEF的长是多少?的长是多少?、CD DE EF3.同圆或等圆中圆心角、弧、弦之间的关系同

28、圆或等圆中圆心角、弧、弦之间的关系:(1)(1)在同圆或等圆中在同圆或等圆中,如果圆心角相等如果圆心角相等,那么它那么它所对的弧相等所对的弧相等,所对的弦相等所对的弦相等.(2)(2)在圆中在圆中,如果弧相等如果弧相等,那么它所对的圆心角那么它所对的圆心角相等相等,所对的弦相等所对的弦相等.(3)(3)在一个圆中在一个圆中,如果弦相等如果弦相等,那么它所对的弧那么它所对的弧相等相等,所对的圆心角相等所对的圆心角相等.ABDCO COD=AOBABCD=AB=CD1、如图、如图,已知已知 O的半径的半径OA长长为为5,弦弦AB的长的长8,OCAB于于C,则则OC的长为的长为 _.OABC3AC=

29、BC弦心距弦心距半径半径半弦长半弦长反思:反思:在在 O中,若中,若 O的半径的半径r、圆心到弦的距离圆心到弦的距离d、弦长、弦长a中,中,任意知道两个量,可根据任意知道两个量,可根据定理求出第三个量:定理求出第三个量:CDBAO2 2:如图,圆如图,圆O O的弦的弦ABAB8 8 ,DCDC2 2,直径,直径CEABCEAB于于D D,求半径求半径OCOC的长。的长。DCEOAB垂径垂径直径直径MNAB,垂足为垂足为E,交弦交弦CD于点于点F.3、如图,、如图,P为为 O的弦的弦BA延长线上一点,延长线上一点,PAAB2,PO5,求,求 O的半径。的半径。关于弦的问题,常常需关于弦的问题,常

30、常需要要过圆心作弦的垂线段过圆心作弦的垂线段,这是一条非常重要的这是一条非常重要的辅辅助线助线。圆心到弦的距离、半径、圆心到弦的距离、半径、弦长弦长构成构成直角三角形直角三角形,便将问题转化为直角三便将问题转化为直角三角形的问题。角形的问题。MAPBOA 4.圆周角圆周角:定义定义:顶点在圆周上,两边和圆相交的顶点在圆周上,两边和圆相交的角,叫做圆周角角,叫做圆周角.性质性质:(1)在同一个圆中在同一个圆中,同弧所对的圆周同弧所对的圆周角等于它所对的圆心角的一半角等于它所对的圆心角的一半.OABCBAC=BOC12OBADEC在同圆或等圆中在同圆或等圆中,同弧或等弧所对的所有的同弧或等弧所对的

31、所有的圆周角相等圆周角相等.相等的圆周角所对的弧相等相等的圆周角所对的弧相等.圆周角的性质圆周角的性质(2)ADB与与AEB、ACB 是同弧所对的圆周角是同弧所对的圆周角ADB=AEB=ACB性质性质 3:半圆或直径所对的圆周角都半圆或直径所对的圆周角都相等相等,都等于都等于900(直角直角).性质性质4:900的圆周角所对的弦是圆的直径的圆周角所对的弦是圆的直径.OABCAB是是 O的直径的直径 ACB=900圆周角的性质圆周角的性质:15ABCOD3.6作圆的直径与找作圆的直径与找90度的圆周度的圆周角也是圆里常用的辅助线角也是圆里常用的辅助线2.如图,如图,AB是是 O的直径的直径,BD

32、是是 O的弦,延长的弦,延长BD到点到点C,使使 DC=BD,连接连接AC交交 O与点与点F.(1)AB与与AC的大小有什么关的大小有什么关 系系?为什么为什么?(2)按角的大小分类)按角的大小分类,请你判断请你判断 ABC属于哪一类三角形,属于哪一类三角形,并说明理由并说明理由.(05宜昌宜昌)O OF FD DC CB BA A1.在在 O中,弦中,弦AB所对的圆心角所对的圆心角AOB=100,则,则弦弦AB所对的圆周角为所对的圆周角为_.(05年上海)年上海)500或或1300(2)点在圆上点在圆上(3)点在圆外点在圆外(1)点在圆内点在圆内1.点和圆的位置关系点和圆的位置关系ACB如果

33、规定点与圆心的距离为如果规定点与圆心的距离为d,圆的半径圆的半径为为r,则则d与与r的大小关系为的大小关系为:点与圆的位置关系 d与r的关系 点在圆内点在圆内点在圆上点在圆上点在圆外点在圆外drdrdr三三.与圆有关的位置关系与圆有关的位置关系:2.如图如图,OA是是 O的半径的半径,已知已知AB=OA,试探试探索当索当OAB的大小如何变化时点的大小如何变化时点B在圆内在圆内?点点B在圆上在圆上?点点B在圆外在圆外?ABO2.直线和圆的位置关系直线和圆的位置关系:OOOl ll ll l(1)相离相离:(2)相切相切:(3)相交相交:一条直线与一个圆没有公共点一条直线与一个圆没有公共点,叫做叫

34、做直线与这个圆相离直线与这个圆相离.一条直线与一个圆只有一个公共点一条直线与一个圆只有一个公共点,叫叫做直线与这个圆相切做直线与这个圆相切.一条直线与一个圆有两个公共点一条直线与一个圆有两个公共点,叫叫做直线与这个圆相交做直线与这个圆相交.OOl l(1)当直线与圆相离时当直线与圆相离时dr;(2)当直线与圆相切时当直线与圆相切时d=r;(3)当直线与圆相交时当直线与圆相交时dr.直线与圆位置关系的识别直线与圆位置关系的识别:drl ldrOl ldr设圆的半径为设圆的半径为r,圆心到直线的距离为圆心到直线的距离为d,则则:1.与圆有一个公共点的直线。与圆有一个公共点的直线。2.圆心到直线的距

35、离等于圆的半圆心到直线的距离等于圆的半径的直线是圆的切线。径的直线是圆的切线。3.经过半径的外端且垂直于这条经过半径的外端且垂直于这条半径的直线是圆的切线。半径的直线是圆的切线。OAl lOA是半径是半径,OA l l直线直线l l是是 O的切线的切线.切线的性质切线的性质:(1)圆的切线垂直于经过切点的半径圆的切线垂直于经过切点的半径.(2)经过圆心垂直于切线的直线必经过切点经过圆心垂直于切线的直线必经过切点.(3)经过切点垂直于切线的直线必经过圆心经过切点垂直于切线的直线必经过圆心.OAl OA l l直线直线l l是是 O的切线的切线,切切点为点为A切线长定理:切线长定理:从圆外一点引圆

36、的两条切线,它们从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分的切线长相等;这点与圆心的连线平分这两条切线的夹角。这两条切线的夹角。BAPOPA、PB为为 O的切线的切线PA=PB,APO=BPO过过D点作点作DF AC于于F点,然后证明点,然后证明DF等于圆等于圆D的半的半径径BD如图,如图,AB在在 O的直径,点的直径,点D在在AB的延长的延长线上线上,且且BD=OB,点点C在在 O上上,CAB=30.(1)CD是是 O的切线吗?说明你的理由的切线吗?说明你的理由;(2)AC=_,请给出合理的解释,请给出合理的解释.A B C D O 只要连接只要连接OC,而后证明而后证

37、明OC垂直垂直CD不在同一直线上的三点确定一个圆不在同一直线上的三点确定一个圆.OCBA三角形的外接圆与内切圆三角形的外接圆与内切圆:三角形的外心就是三角形各边垂直平分线的交点三角形的外心就是三角形各边垂直平分线的交点.OABC三角形的内心就是三角形各角平分线的交点三角形的内心就是三角形各角平分线的交点.等边三角形的外心与内心重合等边三角形的外心与内心重合.特别的特别的:内切圆半径与外接圆半径的比是内切圆半径与外接圆半径的比是1:2.OABCD二、过三点的圆及外接圆1.过一点的圆有过一点的圆有_个个2.过两点的圆有过两点的圆有_个,这些圆的圆心个,这些圆的圆心的都在的都在_ 上上.3.过三点的

38、圆有过三点的圆有_个个4.如何作过不在同一直线上的三点的圆(或三如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)庄距离相等)5.锐角三角形的外心在三角形锐角三角形的外心在三角形_,直角三角,直角三角形的外心在三角形形的外心在三角形_ _,钝角钝角三角形的外心在三角形三角形的外心在三角形_。无数无数无数无数0或或1内内外外连结着两点的线段的垂直平分线连结着两点的线段的垂直平分线在斜边的中点上在斜边的中点上3.如图如图,是某机械厂的一种零件平面图是某机械厂的一种零件平面图.(1)请你根据所学的知识找出该零件所在圆的请

39、你根据所学的知识找出该零件所在圆的圆心圆心(要求正确画图要求正确画图,不写做法不写做法,保留痕迹保留痕迹).(2)若弦若弦AB=80cm,AB的中点的中点C到到AB的距离是的距离是20cm,求该零件所在的半径长求该零件所在的半径长.EF HG7如图,M与x 轴相交于点A(2,0),B(8,0),与y轴相切于点C,求圆心M的坐标AO y.MCxB圆与圆的位置关系圆与圆的位置关系:.外离外离外切外切相交相交内切内切内含内含典型例题典型例题:1.如图如图,O的直径的直径AB=12,以以OA为直径的为直径的 O1交大圆的弦交大圆的弦AC于于D,过过D点作小圆的点作小圆的切线交切线交OC于点于点E,交交

40、AB于于F.EO1ODCBAF(2)猜想猜想DF与与OC的位的位置关系置关系,并说明理由并说明理由.(1)说明说明D是是AC的中点的中点.(3)若若DF=4,求求OF的长的长.2.如图如图,正方形正方形ABCD的边长为的边长为2,P是线段是线段BC上的一个动点上的一个动点.以以AB为直径作圆为直径作圆O,过点过点P作圆作圆O的切线交的切线交AD于点于点F,切点为切点为E.DCBAFPOE(1)求四边形求四边形CDFP的周长的周长.(2)设设BP=x,AF=y,求求y关关于于x的函数解析式的函数解析式.Q三三.正多边形正多边形:2.半径:正多边形外接圆的半径叫做这半径:正多边形外接圆的半径叫做这

41、个正多边形的半径个正多边形的半径.中心:一个正多边形外接圆的圆心中心:一个正多边形外接圆的圆心叫做这个正多边形的中心叫做这个正多边形的中心3.中心角:正多边形每一边所对的外接圆中心角:正多边形每一边所对的外接圆的圆心角叫做这个正多边形的中心角的圆心角叫做这个正多边形的中心角4.边心距:中心到正多边形一边的距离边心距:中心到正多边形一边的距离叫做这个正多边形的边心距叫做这个正多边形的边心距OABFDCEG3 正多边形和圆正多边形和圆(1).有关概念有关概念(2).常用的方法常用的方法(3).正多边形的作图正多边形的作图EFCD.边心距r中心角边OABCRd12a2221()2adRa1.1.圆的

42、周长和面积公式圆的周长和面积公式2.2.弧长的计算公式弧长的计算公式3.3.扇形的面积公式扇形的面积公式S=360nr2L L=180nr=12l lr rS或或四四.圆中的有关计算圆中的有关计算:周长周长C=2r面积面积s=r2Or4.圆柱的展开图圆柱的展开图:DBCArhS侧侧=2r hS全全=2r h+2 r25.圆锥的展开图圆锥的展开图:底面底面侧面侧面aahrS侧侧=r aS全全=r a+r21、扇形扇形AOB的半径为的半径为12cm,AOB=120,求求扇形的面积和周长扇形的面积和周长.2、如图如图,当半径为当半径为30cm的转动轮转过的转动轮转过120时时,传送带上的物体传送带上

43、的物体A平移的距离为平移的距离为_.AlA BC l4.如下图,所示的三角形铁皮余料,剪下扇形制如下图,所示的三角形铁皮余料,剪下扇形制成圆锥形玩具,已知成圆锥形玩具,已知C=90度,度,AC=BC=4cm,使剪下的扇形边缘半径在三角形边上,弧与其使剪下的扇形边缘半径在三角形边上,弧与其他边相切,设计裁剪的方案图,直接写出扇形他边相切,设计裁剪的方案图,直接写出扇形的半径长。的半径长。ACBACBACBBCAOO12 2r 24r 32r 44 24r 5、扇形的面积是它所在圆的面积的、扇形的面积是它所在圆的面积的 ,这个扇,这个扇形的圆心角的度数是形的圆心角的度数是_.322406、圆锥的母

44、线为圆锥的母线为5cm,底面半径为,底面半径为3cm,则,则圆锥的表面积为圆锥的表面积为_24cm2ECBAOD常见的基本图形及结论常见的基本图形及结论:1.如图如图,在以在以O为圆心的为圆心的两个同心圆中两个同心圆中,大圆的弦大圆的弦AB交小圆于交小圆于C、D,则则:AC=BD若大圆的弦切小圆于若大圆的弦切小圆于C,则则OACBAC=BC两圆之间的环形面积两圆之间的环形面积S=AB241OABCOABCDFEDFE4.如图如图,ABC各边分别各边分别切圆切圆O于点于点D、E、F.(1)DEF=900-A21(3)S ABC=(a+b+c)r21(2)BOC=900+A21ABCOEFD5.在在Rt ABC中中,ACB是直角是直角,三边分三边分别是别是a、b、c,内切圆半径是内切圆半径是r,则则:内切圆半径内切圆半径r=a+b-c26.如图如图,AB是圆是圆O的直径的直径,AD,BC,DC均均为切线为切线,则则:(1)DC=AD+BC(2)DOC=900OBDCAE熟练掌握以下的结论熟练掌握以下的结论)(,则)();(,其中)则内切圆半径(,的对边,面积为、中分别为、设cbarCcbappsrSCBAABCcba21902211rr记住:记住:在具体计算时往往用到的是面在具体计算时往往用到的是面积法和方程思想积法和方程思想

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(人教版九年级24圆课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|