复变函数-第6章-共形影射汇总课件.ppt

上传人(卖家):晟晟文业 文档编号:5123670 上传时间:2023-02-13 格式:PPT 页数:80 大小:3.77MB
下载 相关 举报
复变函数-第6章-共形影射汇总课件.ppt_第1页
第1页 / 共80页
复变函数-第6章-共形影射汇总课件.ppt_第2页
第2页 / 共80页
复变函数-第6章-共形影射汇总课件.ppt_第3页
第3页 / 共80页
复变函数-第6章-共形影射汇总课件.ppt_第4页
第4页 / 共80页
复变函数-第6章-共形影射汇总课件.ppt_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、本章学习目标 1、了解解析函数的导数的几何意义及保角映射的概念;2、掌握幂函数与指数函数映射的性质;3、掌握线性映射的性质和分式线性映射的保圆性和保对称性;4、会求一些简单区域之间的保角映射。6.1 解析函数的影射性质21.切线倾角的复数表示设 是一条连续曲线,其方程为 若 ,则在曲线 上的点 处的切线存在,且此切线的倾角为3C ttzz,ttz,0C 00tzz 0tzArg z 平面内的任一条有向曲线 C 可用表示,它的正向取为t增大时点z移动的方向,z(t)为一条连续函数.如果 ,则表示z(t)的向量(把起点放取在z0.以下不一一说明)与 C 相切于点z0=z(t0).4z(t0)z()

2、z()z(t0)ttzz,ttz,0ttzttz)()(00 事实上,如果通过C上两点P0与P的割线P0P的正向对应于t增大的方向,则这个方向与表示 的方向相同.5Oxyz(t0)P0Pz(t0+Dt)C(z)ttzttztzt)()(lim)(0000 当点P沿C无限趋向于点P0,割线P0P的极限位置就是C上P0处的切线.因此,表示 的向量与C相切于点z0=z(t0),且方向与C的正向一致.如果我们规定这个向量的方向作为C上点z0处的切线的正向,则我们有1)Arg z(t0)就是z0处C的切线正向与x轴正向间的夹角;2)相交于一点的两条曲线C1与C2正向之间的夹角就是它们交点处切线正向间夹角

3、6设函数w=f(z)在区域D内解析,z0为D内的一点,且f(z0)0.又设C为z平面内通过点z0的一条有向光滑曲线,它的参数方程是:z=z(t),t,它的正向相应于参数t增大的方向,且z0=z(t0),z(t0)0,t0.则映射w=f(z)将C映射成w平面内通过点z0的对应点w0=f(z0)的一条有向光滑曲线G,它的参数方程是 w=fz(t),t 正向相应于参数t增大的方向.70zfArg 根据复合函数求导法,有 w(t0)=f(z0)z(t0)0因此,在G上点w0处也有切线存在,且切线正向与u轴正向的夹角是 Arg w(t0)=Arg f(z0)+Arg z(t0)8OxyOuvz0P0rz

4、PDsC(z)(w)Gw0Q0QwrDs 即 Arg w(t0)Arg z(t0)=Arg f(z0)(6.1)如果假定x轴与u轴,y轴与v轴的正向相同,而且将原来的切线的正向与映射过后的切线的正向之间的夹角理解为曲线C经过w=f(z)映射后在z0处的转动角,则(6.1)式表明:1)导数f(z0)0的辐角Arg f(z0)是曲线C经过w=f(z)映射后在z0处的转动角;2)转动角的大小与方向跟曲线C的形状与方向无关.所以这种映射具有转动角的不变性.9 通过z0点的可能的曲线有无限多条,其中的每一条都具有这样的性质,即映射到w平面的曲线在w0点都转动了一个角度Arg f(z0).10OxyOuv

5、(z)(w)z0w0 相交于点z0的任何两条曲线C1与C2之间的夹角,在其大小和方向上都等同于经w=f(z)映射后C1与C2对应的曲线G1与G2之间的夹角,所以这种映射具有保持两曲线间夹角与方向不变的性质.这种性质称为保角性11OxyOuv(z)(w)z0w0C1C2G1G212 在与前面2的讨论作相同的假设条件下,容易得到即 的几何意义是映射 在点 的伸缩率,且此伸缩率具有不变性0zf 0lim0000zzzfzfzfzz0zf zfw0z13OxyOuvz0P0rzPDsC(z)(w)Gw0Q0QwrDsszfrssrzzzfzfzzwwzziiilim|)(|eee)()(00)(000

6、0ssrsr得 上式表明:|f(z)|是经过映射w=f(z)后通过点z0的任何曲线C在z0的伸缩率,它与曲线C的形状及方向无关.所以这种映射又具有伸缩率的不变性.14szfzzlim|)(|00s 综上,我们有定理6.1 设函数w=f(z)在区域D内解析,z0为D内的一点,且f(z0)0,则映射w=f(z)在z0具有两个性质:1)保角性.即通过z0的两条曲线间的夹角跟经过映射后所得两曲线间的夹角在大小和方向上保持不变2)伸缩率的不变性.即通过z0的任何一条曲线的伸缩率均为|f(z0)|而与其形状和方向无关.15 最后,我们给出共形映射的定义。定义定义 设函数w=f(z)在z0的邻域内是一一的,

7、在z0具有保角性和伸缩率不变性,则称映射w=f(z)在z0是共形的,或称w=f(z)在z0是共形映射.如果映射w=f(z)在D内的每一点都是共形的,就称w=f(z)是区域D内的共形映射.166.2 几个初等函数的映射性质17 这是一个平移映射(变换).因为复数相加可以化为向量相加,z沿向量b的方向平移一段距离|b|后,就得到w.在复平面处处保角将圆周映射为圆周18O(z)(w)zwhzwh这是一个旋转与伸长(或缩短)的叠加映射.设k=lei将z先转一个角度,再将|z|伸长(或缩短)l倍后,就得到w.在复平面处处保角19O(z)=(w)zwkzw k0kOPOP=r2,因为DOPT相似于DOPT

8、.因此,OP:OT=OT:OP,即OPOP=OT2=r2.20CPPrTOP与P关于圆周C互为对称点21zw1w1zw1该映射称为反演变换或倒数变换,它的相继施行两个对称变换的结果:一是关于单位圆周对称,二是关于实轴对称在复平面上除 外处处保角将圆周映射为圆周约定:将直线理解成半径为无穷大的圆周,则可说反演变换具有保圆周性0z221.幂函数 w=zn(n2为自然数)在z平面内除点 外处处保角将射线 映射成射线将圆周 映射成圆周将模相同而幅角相差 的整数倍的两个点映射为同一点把以原点为顶点的角形域映射成以原点为顶点的角形域,但张角变成了原来的n 倍0z0argz0argnw 0rz nrw0n2

9、23O(z)0O(w)n0w=zn(z)(w)OOn2上岸下岸w=zn24 由于幂函数 在 内单叶、解析,所以其反函数 在 时的单值支 在 内均为单叶、解析的函数,所以根式函数的每一个单值具有将角形区域的张角缩小的映射性质.nzwn,nzw1,2,1nkGknzw1,2,1nkkzkG1.指数函数 是一个全平面上的共形映射;将 平面的直线 映射为 平面上的始于原点的射线 ;将 平面的线段 映射为 平面上圆周 ;将带形域0Im(z)a映射成角形域0arg wa.特别是带形域 映射成沿正实轴剪开的w平面:0arg w2.它们间的点是一一对应的.25zew z0yy zw20,0yxx0y0 xew

10、 wZkkyk,12226aiOxy(z)arg w=auOv(w)2iOxy(z)Ouv(w)w=ezz=lnw上岸下岸由指数函数由指数函数 所构成的映射的特点所构成的映射的特点是是:把水平的带形域把水平的带形域0Im(0Im(z z)a a(a a )映射成映射成角形域角形域0arg 0arg w w 0映射成单位圆|w|0映射成单位圆|w|0映射成|w|0映射成单位圆|w|0映射成单位圆|w|0映射成单位圆|w|1且满足w(2i)=0,arg w(2i)=0的分式线性映射.解 由条件w(2i)=0知,所求的映射要将上半平面中的点z=2i映射成单位圆周的圆心w=0.所以由(6.3.2)得5

11、82e,(2)24arg(2)0,.22iiziiwwieziwi22ziwizi从而得所求的映射为59x1y(z)OOuv(w)11601|1(0).,1,0,.zwwzwzw 点 对称于单位圆周的点应该被映射成平面上的无穷远点 即与对称的点 因此当时而当时满足这些条件的分式线性映射具有如下的形式,111zzkzzkzzkwk k其中解 设z平面上单位圆|z|1内部的一点a映射成w平面上的单位圆|w|1的中心w=0.这时与61|,1|1|1|w|11|k|又因所以|k|=1,即k=ei.这里是任意实数.,1zzkw由于z平面上单位圆周上的点要映成w平面上单位圆周上的点,所以当|z|=1,|w

12、|=1.将圆周|z|=1上的点 z=1 代入上式,得62e.(|1)(6.3.5)1izwz.1eee1ee|iiiiiw反之,形如上式的映射必将单位圆|z|1映射成单位圆|w|1.这是因为圆周|z|=1上的点z=ei(为实数)映射成圆周|w|=1上的点:同时单位圆|z|1内有一点z=a映射成w=0.所以(6.3.5)必将单位圆|z|1映射成单位圆|w|1.因此,将单位圆|z|1映射成单位圆|w|0的分式线性映射.解 由条件w(1/2)=0知,所求的映射要将z=1/2 映射成|w|0映射成|w-2i|2且满足条件w(2i)=2i,arg w(2i)=-p/2的分式线性映射.解 容易看出,映射z

13、=(w-2i)/2将|w-2i|2映射成|z|0映射成|z|1且满足z(2i)=0的映射易知为66.i2z2z)i1(2wi2zi2z2i2w.0,2)i2(warg.2)i4arg()e2arg()i2(warg,i41e2)i2(wi2zi2ze2i2wiii或于是所求映射为从而得由于已知672i(z)O()2i(w)izziw22)1(2iziz22w=2(i+)68.izizw.1|w|iiw44所求映射为因此圆将上半平面映射成单位【例7】求把角形域0arg zp/4映射成单位圆|w|1的一个映射.解 z=z4将所给角形域0arg z0.又从上节的例2知,映射69(z)O4O()1(w

14、)z4iiwizizw44700(w)O1C1C2(z)Oii【例8】求把下图中由圆弧C2与C3所围成的交角为a的月牙域映射成角形域j0arg wj0+a的一个映射.71O()0(w)O1C1C2(z)Oiiizizi0eiw izizewi)2(0172izizk其中k为待定的复常数.解 先求出把C1,C2的交点i与-i分别映射成z平面中的z=0与z=,并使月牙域映射成角形域0argzp;再把这角形域通过映射w=exp(ij0)z转过一角度j0,即得把所给月牙域映射成所给角形域的映射.将所给月牙域映射成z平面中的角形域的映射是具有以下形式的分式线性函数:73.izizeiziziew.arg

15、0,.Cizizi,1ik.iki1i1k1zCizizk)2(ii1100由此得所求的映射为映射成角形域它把所给的月牙域根据保角性平面上的正实轴映射成就把映射这样使取映射成上的点此映射把74xOy(z)C(a+ih)B DaOuv(w)aha a+hBCD【例9】求把具有割痕Re(z)=a,0Im(z)h的上半平面映射成上半平面的一个映射.75xOy(z)C(a+ih)B DaOuv(w)aha a+hBCDO(z1)CB Dihh2CO BD(z2)COBh2D(z3)O(z4)CBDh+hz1=zaz2=z12z3=z2+h234zz w=z4+aahazw22)(解 不难看出,解决本题

16、的关键显然是要设法将垂直于x轴的割痕的两侧和x轴之间的夹角展平.由于映射w=z2能将顶点在原点处的角度增大到两倍,所以利用这个映射可以达到将割痕展平的目的.首先,把上半z平面向左作一个距离为a的平移:z1=za.第二,再应用映射z2=z12,便得到一个具有割痕h2Re(z2)+,Im(z2)=0的z2平面.第三,把z2平面向右作一距离为h2的平移:z3=z2+h2,便得到去掉了正实轴的z3平面.7677ah)az(w:.w,azw:az,.z,zz,2244434映射就得到所求出把所有的映射复合起来平面中的上半平面便得到的平移平面向右作一距离为把最后平面便得到上半通过映射第四78ieiew.1|w|0)Im(iiwzz因此所求的映射为成单位圆映射将平面的上半平面映射【例10】求把带形域0Im(z)p映射成单位圆|w|0.而根据(6.3.4)又知:79 后可映射成带形域0Im().再用映射w=e,就可把带形域0Im()0.因此所求映射为()izaba()iz ab awe【例11】求把带形域aRe(z)0的一个映射.解 带形域aRe(z)b经过映射80O(z)ab(w)Oi()O)(azabiw=e)(aabiew

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(复变函数-第6章-共形影射汇总课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|