无线电导航原理及系统3-11课件.ppt

上传人(卖家):晟晟文业 文档编号:5145858 上传时间:2023-02-14 格式:PPT 页数:43 大小:862.50KB
下载 相关 举报
无线电导航原理及系统3-11课件.ppt_第1页
第1页 / 共43页
无线电导航原理及系统3-11课件.ppt_第2页
第2页 / 共43页
无线电导航原理及系统3-11课件.ppt_第3页
第3页 / 共43页
无线电导航原理及系统3-11课件.ppt_第4页
第4页 / 共43页
无线电导航原理及系统3-11课件.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、无线电导航原理与系统第三章 无线电导航理论基础 一.空间坐标系无线电导航的基本任务就是确定被引导的航行体在运动过程中的状态参数,包括位置、速度、加速度、姿态等,这些参数是在一定的空间坐标系内定义的,因此要进行导航首先必须建立适当的参考坐标系。地球是人类的活动中心,在选择导航空间坐标系的时候,总是以地球为考虑的出发点。首先介绍一下地球的几何形状及其参数,以便于认识和理解下面介绍的各种空间坐标系。一.空间坐标系地球的几何形状及其参数 地球是一个旋转椭球;但是地球又不是一个理想的旋转椭球体,其表面起伏不平,很不规则,有高山、陆地、大海等。在实际应用中,人们采用一个旋转椭球面按照一定的期望指标(如椭球

2、面和真实大地水准面之间的高度差的平方和为最小)来近似大地水准面,并称之为参考椭球面。参考椭球面的大小和形状可以用两个几何参数来描述,即长半轴a和扁率f。一.空间坐标系地球的几何形状及其参数目前应用中两个比较重要的参考椭球系是克拉索夫斯基椭球和WGS-84椭球。我国使用了40多年的1954北京坐标系(京-54坐标系),就是基于克拉索夫斯基椭球系。椭球名称克拉索夫斯基椭球WGS-84椭球长半轴a6378245m6378137m扁率f1/298.31/298.257223563常用参考椭球系的主要参数 一.空间坐标系参考椭球上的主要面、线和曲率半径1 参考椭球的法截面和法截线如图所示,O为参考椭球的

3、中心。过地面点P作椭球面的垂线PK,称之为法线。包含过P点的法线的平面叫法截面。法截面与椭球面的交线叫做法截线。一.空间坐标系tgftgabtg222)1(a、b、f分别为参考椭球的长半轴、短半轴和扁率,它们之间的关系为:一.空间坐标系在实际计算中,为了方便往往在某一范围内把椭球面当作球面来处理,一般取该点所有方向的法截面曲率半径的平均值作为近似球面半径,称为平均曲率半径R,可推导出它的计算公式为:MNRRR 一.空间坐标系上述几种曲率半径有时可以直接应用,如已知某载体的东、北向速度,则可以求得载体的经、纬度为:0000teNtnMvd tRhvd tRh分别为载体的初始经、纬度,h为载体的海

4、拔高度 00一.空间坐标系常用导航坐标系 天球坐标系(i系)地心地固坐标系(e系)地平坐标系(g系)载体坐标系(b系)一.空间坐标系天球坐标系(i系)定义:原点在地球质心,X轴指向平春分点,Z轴是天轴,平行于平均 地球自转轴,Y轴垂直于X、Z轴并构成右手坐标系。特点:独立于地球之外的基本稳定的坐标系(便于研究宇宙航行和天体运动时描述物体相对于地球的运动),能够比较直观地从地球的角度出发观察和描述整个宇宙。天球坐标系 一.空间坐标系地心地固坐标系(e系)定义:原点在地球的质心,XOY平面与地球平赤道面重合,X轴的指向穿过格林威治子午线和赤道的交点,Z轴与地球平极轴重合。特点:该坐标系在大地测量领

5、域中应用较为广泛,国际上常用的WGS-84椭球就是该坐标系的近似描述。它是一个相对于地球自转静止的,固联在地球上的坐标系。对宇宙天体的研究范围缩小到地球表面附近 时适合采用此坐标系。一.空间坐标系XYZP(xe,ye,ze)h格林尼治子午线H地理坐标示意图一.空间坐标系地平坐标系(g系)定义:原点位于当地参考椭球的球面上,X轴沿参考椭球卯酉圈方向并指向东,Y轴沿参考椭球子午圈方向指向地球北极,Z轴沿椭球面外法线方向指向天顶。特点:该坐标系对地球表面处于地表及平流层内的用户来说比较直观,因此适用于大多数导航的应用,故又称为导航坐标系。一.空间坐标系XeYeZeXLYLZLPO一.空间坐标系载体坐

6、标系(b系)定义:以载体为中心、固联于载体上的坐标系,称为载体坐标系。载体坐标系的原点位于载体的质心,Y轴指向载体的纵轴方向向前,Z轴沿载体的竖轴方向向上,X轴与Y、Z轴构成右手坐标系。特点:对于车辆、舰船,特别是飞机这样的载体,其往往是群体运动中的一员,特别在飞机协同作战的过程中,需要知道自己的运动速度以及其他成员与自己的相对位置关系,载体坐标系适用于此类应用。一.空间坐标系XbYbZbO载体坐标系示意图 一.空间坐标系坐标系转换 航行体的导航参量是与特定的空间坐标系相关联的,坐标系不同则导航参量将会发生变化 例:利用卫星导航定位的飞机编队成员之间需要知道彼此的相对位置关系,此时就需要将其它

7、飞机在地心地固坐标系中的位置坐标,转化为某编队成员所在的地平坐标系中的相对位置坐标。卫星的定轨通常是在地心地固坐标系中进行测量定位的,但是为了研究卫星的运行轨道以及对轨道进行预测等需要,往往将卫星在地心地固坐标系的位置转化为天球坐标系中的位置坐标。一.空间坐标系坐标系转换空间三维坐标的旋转通常可以分解为多次平面坐标的旋转。如地心地固坐标系转换为天球坐标系需要绕地球极轴旋转由地球自转引入的角度;地平坐标系绕X轴顺时针旋转纬度角,然后绕Y轴旋转经度角,就可以转换到地心地固坐标系;载体坐标系绕航行体纵轴旋转横滚角,然后绕飞机横向旋转俯仰角,最后绕航行体垂向旋转航向角,就可以转换到当地地平坐标系。一.

8、空间坐标系TeeeZYXTiiiZYXeeeeeeieiiiZYXZYXRZYX1000cossin0sincos地固坐标转换为天球坐标其中为地球自转引起的天球坐标系和地心地固坐标系的旋转角度。例自学地平坐标转换为地固坐标载体坐标转换为地平坐标二.无线电测量原理无线电测量原理 无线电导航通过测量电磁波在空间传播时的电信号参量(如幅度、频率及相位等)进行导航定位,它是一个时间和空间的联合概念。在无线电导航的设计中,往往构建一定的机制使得实际中测量的无线电参量与角度、距离等导航几何参量建立对应关系;然后利用几何参量与待求导航参数之间的数学关系,通过解方程或者其他等效方法求得所需的导航参数。二.无线

9、电测量原理角测量原理角测量原理振幅法相位法站台主动式用户主动式旋转天线方向性图旋转无方向性天线基线方式距离测量原理距离测量原理相位法频率法有源测距无源测(伪)距脉冲法二.无线电测量原理角测量原理振幅法:基本出发点是利用天线的方向性图实现振辐与角度的对应关系两种实现体制。一种是导航台站用方向性天线发射信号,用户利用无方向性天线接收,定义为站台主动式;另一种是导航台站用无方向性天线发射信号,用户端利用方向性天线接收,定义为用户主动式。相位法:无线电波传播时,相位与角度之间没有直接的对应关系,但可以通过采取某些措施使它们建立起对应关系,比如旋转方向性天线、绕圆周旋转无方向性天线,以及采用基线测量法等

10、。二.无线电测量原理距离测量原理 无论是对距离(即矢径长度),还是距离差、距离和的测量,都是利用电磁波在均匀介质空间中传播的直线性和等速性为条件的,主要有相位、频率和脉冲(时间)三种测量距离的方法。二.无线电测量原理相位法相位法相位测距是通过测量电磁波在运载体和导航台之间信号相位的变化来确定距离的。相位差和距离差之间的关系:20ABrrr 由于两个台站(或载体与用户)之间的距离较大,因此相位法测距中常常存在多值性问题,需要采取相应措施消除多值模糊。二.无线电测量原理频率法频率法频率测距是利用发射信号与反射信号的差频来进行测量的。由图可知,发射信号为一线性时间调频信号,也就是其频率的变化与时间成

11、正比。由于电波的传播需要时间,那么在某一时刻,反射回来的信号与正在发射的信号的频率将不相同,它们之间的频率差异将反映信号传播的时间,对应于信号往返的距离或载体的高度。通过测量反射信号与发射信号间的差拍频率,就可以得到距离。二.无线电测量原理脉冲法脉冲法脉冲法测距,实质上是用尖锐的脉冲对时间轴进行标定,然后通过脉冲间隔读取时间,进而测量距离。脉冲测距通常有有源和无源两种方式。有源测距:信号在用户和导航台站之间经历了往、返两个传播过程(这时用户需要发射信号),通过测量信号在空间的往返传播时间计算出用户和导航台站之间的距离。其测距示意图如下:导航台站用户二.无线电测量原理 无源测距:无源测距方式中,

12、用户仅仅接收导航台站发来的电波 信号,利用本地时间测量信号的到达时刻,同时由接收信号的电文中获知信号的发射时刻。利用本地的接收时刻与导航电文中数据所提供的发射时刻之差,即可以完成距离的测量。因此,无源测距中要求用户的时钟与导航台的时钟必须严格同步。三三.无线电导航定位原理无线电导航定位原理无线电导航定位是通过无线电信号参量所测量到的几何、物理参量来确定用户的方位、距离、位置、姿态等。用户的位置参量则需要较复杂的导航解算,主要有两种方法:通过测量的几何参量与几何位置之间的数学关系进行定位,通常称为位置线法;通过测量的物理参量(如速度、加速度等)与几何位置之间的运动学关系确定位置,一般称为推航定位

13、法。无线电参量:幅度测角 时间测距 相位测姿导航参量:方位,距离 位置,姿态三三.无线电导航定位原理无线电导航定位原理 位置面与位置线定位 无线电导航中测得的电参数所对应的几何参量往往为一个固定的数值,对应于标量场中的某一个等位面,称为位置面,如角位置面、距离位置面和距离差位置面等。两个位置面的交线称为位置线,位置线与另一条位置线或与另外的位置面相交就得到用户的位置。特别需要指出的是,在地球表面的运载体,在没有高度测量设备的情况下,可以将地球表面作为它的一个位置面,因此只需要测量两个几何参量(或两个位置面),就可以进行较为粗略的平面二维定位。三三.无线电导航定位原理无线电导航定位原理角位置面角

14、位置面角参量都是相对一定的基准而言的,若基准方向为直线,则角位置面为圆锥面 若基准方向为某一平面,则角位置面为平面 US基准轴基准面US基准轴三三.无线电导航定位原理无线电导航定位原理距离位置面距离位置面测量的是物理距离,则位置面为球面,其代数方程为:若测量的是距离差,则位置面为双曲面,其代数方程为:222)()()(sususuzzyyxxr三三.无线电导航定位原理无线电导航定位原理定位解算定位解算 利用几何参量获得导航参数的方法主要有闭合形式解、迭代及最小二乘解、最优估值解,下面介绍最常用的是迭代及最小二乘解法。设导航参数为 与导航参数相关的测量几何参量为 通常导航参数和几何参量之间的数学

15、映射关系比较复杂,很难直接求得其闭合形式解,通常采用迭代逼近的形式求解。TmxxxX,.,21TnyyyY,.,21三三.无线电导航定位原理无线电导航定位原理定位解算定位解算 先设导航参数的概约值(初值)为则几何参量在该估值点展开为 定义其中:TmxxxX,.,21)()(XXXYXYYXXXXXYHXYYYXXX|),(,XHY三三.无线电导航定位原理无线电导航定位原理最小二乘解法若 为非奇异方阵,则可以求得:通常其也是未知导航参量的函数,因此上述得到的导航参量误差未必能真正将初值一次性修正到真值。将修正后的导航参量值作为新初值继续进行迭代,一直到或小到满足要求为止。在实际工程中经常见到为非

16、方阵的情况(nm),此时不存在唯一解,但按照最小二乘方法将能够得到最小范数解:HYHX1XXX)()(1XYYHHHXXTT三三.无线电导航定位原理无线电导航定位原理推航定位 推航定位是许多自备式导航系统和设备的主要定位方式,其基本原理是运动学方程的积分关系,它的主要步骤为:给定用户或载体出发时刻的位置坐标;测定用户在运动过程中的速度参量(通常在用户的载体坐标系中);利用航姿系统所测量的姿态信息(横滚角r、俯仰角p、航向角y),将测量的载体坐标系中的速度分量转换到地平坐标系。经积分运算,求速度与时间乘积的累加和,即运动的距离,通过计算得到用户的位置坐标。四.无线电导航系统的工作区 导航系统的工

17、作区,是指导航系统能够向载体提供既定质量要求如精度、完好性、连续性、可用性等的导航定位服务的空间区域。一般情况下如无特殊说明,通常都是指狭义工作区,即由仅满足给定导航精度要求的区域形成的覆盖范围。工作区的范围影响因素:几何配置工作频段 辐射功率天线的方向性 接收机性能大气噪声 地理环境条件其他因素四.无线电导航系统的工作区 无线电导航系统的导航精度不仅与距离有关,而且与载体和导航台站的相对几何位置有关,即相同距离上的用户定位精度可能存在较大差别,这是由其定位误差在空间的形状和走向决定的。四.无线电导航系统的工作区误差椭球 所有的导航定位功能都是通过测量直接或间接实现的由于各种噪声、干扰和不可预

18、见因素的存在,测量总会存在误差通常认为测量误差是随机变量,一般很难通过理论或建模等方法对其进行精确描述。在误差相对较小、影响因素较多的情况下,根据中心极限定理,可以将其近似作为正态分布的随机变量来处理,这与很多实际情况也符合较好。当测量的无线电参量有测量误差时,所对应的位置面和位置线也要发生变动,从而导致最终的定位误差。四.无线电导航系统的工作区误差椭球 由上面的结果分析可以得到如下结论:定位误差在每个坐标轴向的误差分量也为零均值正态分布。用户的测量定位误差随几何位置的变化而变化。用户定位误差的三维概率密度函数,其形状为椭球四.无线电导航系统的工作区几何因子以卫星导航中的伪距定位为例,说明导航

19、系统中与定位精度密切相关的几何因子的定义。对于伪距定位而言,若要同时完成时、空的四维解算,需要同时测量四个独立的伪距方程。四.无线电导航系统的工作区为研究及分析的方便,定义几何精度衰减因子(Geodetic Decline of Precision)为:还可以分别定义位置误差几何因子PDOP、水平位置误差几何因子HDOP、垂直位置误差几何因子VDOP和时钟误差几何因子TDOP为:2/11443322112222)(/GGtraceGGGGGDOPTtzyx332211222/GGGPDOPzyx221122/xyHDOPGG233/zVDOPG44/GTDOPt 四.无线电导航系统的工作区 几何工作区 系统的定位精度与几何位置有关,即在某些区域中,导航系统的精度下降可能已经不能满足正常导航的需要。由上面的误差椭球概念可以知道,定位点落在误差椭球面内的概率为:通常导航系统是在给定的误差概率P的条件下,来确定椭球各个轴的大小,要求误差椭球的半长轴不能超出额定数值,满足这一条件的空间区域就构成了系统的几何工作区。kKKdvKfdvzyxfdvzyxfKP00)(),(1),()(本本 章章 作作 业业1、4、7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(无线电导航原理及系统3-11课件.ppt)为本站会员(晟晟文业)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|